• 제목/요약/키워드: Wind Turbulence

검색결과 616건 처리시간 0.024초

풍동실험을 통한 개폐 유형별 개폐식 돔 지붕의 풍압 특성 분석 (Analysis of Wind Pressure Characteristics of Retractable Dome Roof by Opening Type Through Wind Tunnel Test)

  • 천동진;이종호;김용철;윤성원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.41-49
    • /
    • 2021
  • In this study the characteristics of wind pressure that are depending on the open type of retractable dome roof were analyzed according to the wind pressure coefficient and wind pressure spectrum. The analysis results showed that the open type and shape of the roof both had a significant impact on the wind pressure changing. In case of the edge to center open type, the wind pressure has not changed much because of the complex turbulence of flow and open area. On the other hand, in case of the center to edge open type, it has confirmed that wind pressure increases due to the separation of flow in windward and open area.

풍동을 이용한 간척지 내 양지붕형 온실의 지붕 경사에 따른 풍압계수 평가 (Estimation of Wind Pressure Coefficients on Even-Span Greenhouse Built in Reclaimed Land according to Roof Slop using Wind Tunnel)

  • 김락우;김동우;류기철;권경석;이인복
    • 생물환경조절학회지
    • /
    • 제23권4호
    • /
    • pp.269-280
    • /
    • 2014
  • To cope with increasing of vegetables and flowers consumptions, horticulture facilities have been modernized. Korea government recently announced construction plan of new greenhouse complex at reclaimed land. However wind characteristics of reclaimed land is totally different from those of inland, wind pressure on greenhouse built in reclaimed land should be carefully evaluated to secure structural safety on the greenhouse. In this study, as a first step, wind pressure coefficient and local wind pressure coefficient on even-span greenhouse were measured using wind tunnel test. ESDU was adopted to realize wind characteristics of reclaimed land such as wind and turbulence profiles. From the wind tunnel test, when wind direction was 0 degree, it was concluded that KBC2009 standard underestimated scale of wind pressure coefficients at roof area of greenhouse whereas NEN-EN2002 standard underestimated those at every surface of greenhouse. When wind direction was 90 degree, both standards did not well reflect the characteristics of wind pressure distribution. From the analysis of local wind pressure coefficients according to wind direction conditions, design of covering, glazing bar of greenhouse where large effects of the local wind pressure were estimated should be well established. Wind pressure coefficients and local wind pressure coefficients according to parts of the greenhouse were finally suggested and these results could be practically used for suggesting new design standards of greenhouse.

An investigation of the wind statistics and extreme gust events at a rural site

  • Sterling, M.;Baker, C.J.;Richards, P.J.;Hoxey, R.P.;Quinn, A.D.
    • Wind and Structures
    • /
    • 제9권3호
    • /
    • pp.193-215
    • /
    • 2006
  • This paper presents an analysis of wind velocity measurements obtained from four ultrasonic anemometers arranged in a vertical formation. The anemometers were located in a rural environment with a view to providing detailed information on the flow statistics of the lower part of the atmospheric boundary layer, particularly for the extreme wind events that are important in loading calculations. The data is analysed using both conventional analysis and conditional sampling. The latter is combined with wavelet analysis in order to provide a detailed analysis of the energy/frequency relationship of the extreme events. The work presented in this paper suggests that on average the extreme events occur as a result of the superposition of two independent mechanisms - large scale events that scale on the atmospheric boundary layer thickness and small scale events a few tens of metres in size.

공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석 (Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect)

  • 김동현;김요한;류경중;김동환;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

Generalized equivalent spectrum technique

  • Piccardo, G.;Solari, G.
    • Wind and Structures
    • /
    • 제1권2호
    • /
    • pp.161-174
    • /
    • 1998
  • Wind forces on structures are usually schematized by the sum of their mean static part and a nil mean fluctuation generally treated as a stationary process randomly varying in space and time. The multi-variate and multi-dimensional nature of such a process requires a considerable quantity of numerical procedures to carry out the dynamic analysis of the structural response. With the aim of drastically reducing the above computational burden, this paper introduces a method by means of which the external fluctuating wind forces on slender structures and structural elements are schematized by an equivalent process identically coherent in space. This process is identified by a power spectral density function, called the Generalized Equivalent Spectrum, whose expression is given in closed form.

Proper orthogonal decomposition in wind engineering - Part 2: Theoretical aspects and some applications

  • Carassale, Luigi;Solari, Giovanni;Tubino, Federica
    • Wind and Structures
    • /
    • 제10권2호
    • /
    • pp.177-208
    • /
    • 2007
  • Few mathematical methods attracted theoretical and applied researches, both in the scientific and humanist fields, as the Proper Orthogonal Decomposition (POD) made throughout the last century. However, most of these fields often developed POD in autonomous ways and with different names, discovering more and more times what other scholars already knew in different sectors. This situation originated a broad band of methods and applications, whose collation requires working out a comprehensive viewpoint on the representation problem for random quantities. Based on these premises, this paper provides and discusses the theoretical foundations of POD in a homogeneous framework, emphasising the link between its general position and formulation and its prevalent use in wind engineering. Referring to this framework, some applications recently developed at the University of Genoa are shown and revised. General remarks and some prospects are finally drawn.

CFD simulations of a performance-scaled wind turbine

  • Ye, Maokun;Chen, Hamn-Ching;Koop, Arjen
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.247-265
    • /
    • 2022
  • In the present study, we focus on the CFD simulations for the performance and the rotor-generated wake of a model-scale wind turbine which was designed for wave tank experiments. The CFD simulations with fully resolved rotor geometry are performed using MARIN's community-based open-source CFD code ReFRESCO. The absolute formulation method (AFM) is leveraged to model the rotating wind turbine. The k - ω SST turbulence model is adopted in the incompressible Reynolds Averaged Navier-Stokes (RANS) simulations. First, the thrust and torque coefficients, CT and CP, are calculated at different Tip Speed Ratios (TSR), and the results are compared against the experimental data and previous numerical results. The pressure distribution of the turbine blades at the 70% span is obtained and compared to the results obtained by other tools. Then, a verification study aiming at quantifying the discretization uncertainty of the turbine performance with respect to the grid resolution in the wake region is performed. Last, the rotor-generated wake at the TSR of 7 is presented and discussed.

Development of a Time-Domain Simulation Tool for Offshore Wind Farms

  • Kim, Hyungyu;Kim, Kwansoo;Paek, Insu;Yoo, Neungsoo
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1047-1053
    • /
    • 2015
  • A time-domain simulation tool to predict the dynamic power output of wind turbines in an offshore wind farm was developed in this study. A wind turbine model consisting of first or second order transfer functions of various wind turbine elements was combined with the Ainslie's eddy viscosity wake model to construct the simulation tool. The wind turbine model also includes an aerodynamic model that is a look up table of power and thrust coefficients with respect to the tip speed ratio and pitch angle of the wind turbine obtained by a commercial multi-body dynamics simulation tool. The wake model includes algorithms of superposition of multiple wakes and propagation based on Taylor's frozen turbulence assumption. Torque and pitch control algorithms were implemented in the simulation tool to perform max-Cp and power regulation control of the wind turbines. The simulation tool calculates wind speeds in the two-dimensional domain of the wind farm at the hub height of the wind turbines and yields power outputs from individual wind turbines. The NREL 5MW reference wind turbine was targeted as a wind turbine to obtain parameters for the simulation. To validate the simulation tool, a Danish offshore wind farm with 80 wind turbines was modelled and used to predict the power from the wind farm. A comparison of the prediction with the measured values available in literature showed that the results from the simulation program were fairly close to the measured results in literature except when the wind turbines are congruent with the wind direction.

Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

  • Kim, Jaewook;Heo, Sanghwan;Koo, WeonCheol
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.347-359
    • /
    • 2021
  • This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.