• Title/Summary/Keyword: Wind Turbulence

Search Result 614, Processing Time 0.026 seconds

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

Development and Characterization of an Atmospheric Turbulence Simulator Using Two Rotating Phase Plates

  • Joo, Ji Yong;Han, Seok Gi;Lee, Jun Ho;Rhee, Hyug-Gyo;Huh, Joon;Lee, Kihun;Park, Sang Yeong
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.445-452
    • /
    • 2022
  • We developed an adaptive optics test bench using an optical simulator and two rotating phase plates that mimicked the atmospheric turbulence at Bohyunsan Observatory. The observatory was reported to have a Fried parameter with a mean value of 85 mm and standard deviation of 13 mm, often expressed as 85 ± 13 mm. First, we fabricated several phase plates to generate realistic atmospheric-like turbulence. Then, we selected a pair from among the fabricated phase plates to emulate the atmospheric turbulence at the site. The result was 83 ± 11 mm. To address dynamic behavior, we emulated the atmospheric disturbance produced by a wind flow of 8.3 m/s by controlling the rotational speed of the phase plates. Finally, we investigated how closely the atmospheric disturbance simulation emulated reality with an investigation of the measurements on the optical table. The verification confirmed that the simulator showed a Fried parameter of 87 ± 15 mm as designed, but a little slower wind velocity (7.5 ± 2.5 m/s) than expected. This was because of the nonlinear motion of the phase plates. In conclusion, we successfully mimicked the atmospheric disturbance of Bohyunsan Observatory with an error of less than 10% in terms of Fried parameter and wind velocity.

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

The Effect of Wind Force on Stability of Agricultural Structures - Numerical Calculation of Wind Pressure Coefficients - (풍하중이 농업시설물의 구조적 안정성에 미치는 영향 -수치해석에 의한 풍력계수분포 산정-)

  • 최홍림;손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • Wind load is known to be one of major forces to influence the stability of agricultural structures. General flow fields were calculated to determine flow characteristics over the envelop of the following three types of greenhouses with arched roof : single span, twin span greenhouses, and two single span greenhouses apart 3m inbetween. Pressure coefficients along the envelop of greenhouse were numerically calculated by the k-$\varepsilon$ turbulence model, which lead to determine wind forces on it. Curvilinear coordinate for an arched roof and the upwind scheme were adopted for the study. The calculated pressure coefficients were validated with the avaliable data of Japanese Standard and NGAM Standard. The Magnitude of calculated forces over the envelop was not in good accordance with data except the windward wall. Even tile data of Japanese and NGAM Standard for validation deviated a lot from each other in quantity and quality. Such discrepancy may be attributed to different geometric and/or flow configuration conditions for experiments, or the insenstivity of the k-$\varepsilon$ turbulence model to recirculation flow.

  • PDF

Verification of a tree canopy model and an example of its application in wind environment optimization

  • Yang, Yi;Xie, Zhuangning;Tse, Tim K.T.;Jin, Xinyang;Gu, Ming
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • In this paper, the method of introducing additional source/sink terms in the turbulence and momentum transport equations was applied to appropriately model the effect of the tree canopy. At first, the new additional source term for the turbulence frequency ${\omega}$ equation in the SST k-${\omega}$ model was proposed through theoretical analogy. Then the new source/sink term model for the SST k-${\omega}$ model was numerically verified. At last, the proposed source term model was adopted in the wind environment optimal design of the twin high-rise buildings of CABR (China Academy of Building Research). Based on the numerical simulations, the technical measure to ameliorate the wind environment was proposed. Using the new inflow boundary conditions developed in the previous studies, it was concluded that the theoretically reasonable source term model of the SST k-${\omega}$ model was applicable for modeling the tree canopy flow and accurate numerical results are obtained.

Coupled dynamic responses of a semisubmersible under the irregular wave and turbulent wind

  • Dey, Swarnadip;Saha, Kaushik;Acharya, Pooja;Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.441-459
    • /
    • 2018
  • A coupled dynamic analysis of a semisubmersible-type FOWT has been carried out in time domain under the combined action of irregular wave and turbulent wind represented respectively by JONSWAP spectrum and Kaimal spectrum. To account for the turbine-floater motion coupling in a more realistic way, the wind turbulence has been incorporated into the calculation of aerodynamic loads. The platform model was referred from the DeepCwind project and the turbine considered here was the NREL 5MW Baseline. To account for the operationality of the turbine, two different environmental conditions (operational and survival) have been considered and the aerodynamic effect of turbine-rotation on actual responses of the FOWT has been studied. Higher mean offsets in surge and pitch responses were obtained under the operational condition as compared to the survival condition. The mooring line tensions were also observed to be sensitive to the rotation of turbine due to the turbulence of wind and overestimated responses were found when the constant wind was considered in the analysis. Additionally, a special analysis case of sudden shutdown of the turbine has also been considered to study the swift modification of responses and tension in the mooring cables.

Chaotic vibration characteristics of Vertical Axis Wind Turbine (VAWT) shaft system

  • C.B. Maheswaran;R. Gopal;V.K. Chandrasekar;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • We study the progressive full-scale wind tunnel tests on a high solidity vertical axis wind turbine (VAWT) for various tip speeds and pitch angles to understand the VAWT shaft system's dynamics using 0-1 Test for chaos. We identify that while varying rotor speed (tip speed) of the turbine, the system's dynamics change from periodic to chaotic through quasiperiodic and strange non-chaotic (SNA) states. The present study is the first experimental evidence for the existence of these states in the VAWT shaft system to the best of our knowledge. Using the asymptotic growth value Kc in 0-1 test, when the turbine operates at the low tip speeds and high pitch angles for low incoming wind speeds, the system behaves periodic (Kc ≈ 0). However, when the incoming wind speed increases further the system's dynamics shift from periodic to chaotic vibrations through quasi-periodic and SNA. This phenomenon is due to the dynamic stalling of blades which induces chaotic vibration in the VAWT shaft system. Further, the singular continuous spectrum method validates the presence of SNA and differentiates the SNA from chaotic vibrations.

Separation-hybrid models for simulating nonstationary stochastic turbulent wind fields

  • Long Yan;Zhangjun Liu;Xinxin Ruan;Bohang Xu
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In order to effectively simulate nonstationary stochastic turbulent wind fields, four separation hybrid (SEP-H) models are proposed in the present study. Based on the assumption that the lateral turbulence component at one single-point is uncorrelated with the longitudinal and vertical turbulence components, the fluctuating wind is separated into 2nV-1D and nV1D nonstationary stochastic vector processes. The first process can be expressed as double proper orthogonal decomposition (DPOD) or proper orthogonal decomposition and spectral representation method (POD-SRM), and the second process can be expressed as POD or SRM. On this basis, four SEP-H models of nonstationary stochastic turbulent wind fields are developed. In addition, the orthogonal random variables in the SEP-H models are presented as random orthogonal functions of elementary random variables. Meanwhile, the number theoretical method (NTM) is conveniently adopted to select representative points set of the elementary random variables. The POD-FFT (Fast Fourier transform) technique is introduced in frequency to give full play to the computational efficiency of the SEP-H models. Finally, taking a long-span bridge as the engineering background, the SEP-H models are compared with the dimension-reduction DPOD (DR-DPOD) model to verify the effectiveness and superiority of the proposed models.

Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation

  • Lu, C.L.;Li, Q.S.;Huang, S.H.;Tuan, Alex Y.;Zhi, L.H.;Su, Sheng-chung
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.313-350
    • /
    • 2016
  • Taipei 101 Tower, which has 101 stories with height of 508 m, is located in Taipei where typhoons and earthquakes commonly occur. It is currently the second tallest building in the world. Therefore, the dynamic performance of the super-tall building under strong wind actions requires particular attentions. In this study, Large Eddy Simulation (LES) integrated with a new inflow turbulence generator and a new sub-grid scale (SGS) model was conducted to simulate the wind loads on the super-tall building. Three-dimensional finite element model of Taipei 101 Tower was established and used to evaluate the wind-induced responses of the high-rise structure based on the simulated wind forces. The numerical results were found to be consistent with those measured from a vibration monitoring system installed in the building. Furthermore, the equivalent static wind loads on the building, which were computed by the time-domain and frequency-domain analysis, respectively, were in satisfactory agreement with available wind tunnel testing results. It has been demonstrated through the validation studies that the numerical framework presented in this paper, including the recommended SGS model, the inflow turbulence generation technique and associated numerical treatments, is a useful tool for evaluation of the wind loads and wind-induced responses of tall buildings.

LES of wind environments in urban residential areas based on an inflow turbulence generating approach

  • Shen, Lian;Han, Yan;Cai, C.S.;Dong, Guochao;Zhang, Jianren;Hu, Peng
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-24
    • /
    • 2017
  • Wind environment in urban residential areas is an important index to consider when evaluating the living environment. However, due to the complexity of the flow field in residential areas, it is difficult to specify the correct inflow boundary conditions in the large eddy simulation (LES). In this paper, the weighted amplitude wave superposition (WAWS) is adopted to simulate the fluctuating velocity data, which satisfies the desired target wind field. The fluctuating velocity data are given to the inlet boundary of the LES by developing an UDF script, which is implemented into the FLUENT. Then, two numerical models - the empty numerical wind tunnel model and the numerical wind tunnel model with spires and roughness elements are established based on the wind tunnel experiment to verify the present method. Finally, the turbulence generation approach presented in this paper is used to carry out a numerical simulation on the wind environment in an urban residential area in Lisbon. The computational results are compared with the wind tunnel experimental data, showing that the numerical results in the LES have a good agreement with the experimental results, and the simulated flow field with the inlet fluctuations can generate a reasonable turbulent wind field. It also shows that strong wind velocities and turbulent kinetic energy occur at the passageways, which may affect the comfort of people in the residential neighborhood, and the small wind velocities and vortexes appear at the leeward corners of buildings, which may affect the spreading of the pollutants.