• Title/Summary/Keyword: Wind Turbine Generator System

Search Result 353, Processing Time 0.033 seconds

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.

Small Wind Turbine Installed at the University Building Rooftop for Green Energy Utillization (그린에너지 활용을 위한 대학건물 옥상설치형 소형풍력발전)

  • Lee, You Suck;Kim, Jae Yong
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • As the world supply of fossil fuel sources decreases, the need for efficient energy consevation and develping green energy technologies becomes critical. Because of the high cost of the foundation for large turbines and optional high wind speed (over 12 m/s), it is very difficult to be located at inland city. For the solution above mentioned problem, we have been experimented about that not only using the adaption of wind power system on buildings for improving turbine efficiency, but also applying a wound rotor type induction generator for a small wind turbine.In this research, we try to find out the wind direction and wind speed those were measured every 1 min., during operation period, using the anemometers which consist of horizontally spinning cups on a vertical post. Performance testing for small wind turbine generating system was carried out by using the induction motor and invertor. Finally, we measured the power of 1 kW wind turbine system with the clamp meter and a voltmeter.

Simulation for balanced fault of a grid-connected wind generation system (계통연계 풍력발전 시스템의 평형고장에 대한 시뮬레이션)

  • Ahn, Duck-Keun;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.17-20
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations and three-phase fault in the system. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations and the duration of a fault on the system influences on the output of the wind turbine generator.

  • PDF

An integrator based wind speed estimator for wind turbine control

  • Elmaati, Younes Ait;El Bahir, Lhoussain;Faitah, Khalid
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.443-460
    • /
    • 2015
  • In this paper, an integrator based method to estimate the effective wind speed in wind turbine systems is proposed. First, the aerodynamic torque was accurately estimated through a proportional gain based observer where the generator speed is the measured output of the system. The torque signal contains not only useful frequencies of the wind, but also high frequencies and the ones due to structural vibration. The useful information of the wind signal is low frequency. A spectral analysis permitted the determination of the useful frequencies. The high frequencies were then filtered before introducing the torque signal in the wind speed observer. The desired effective wind speed was extracted through an integrator based observer using the previously estimated aerodynamic torque. The strength of the method is to avoid numerical solutions used in literature of the wind speed estimation. The effectiveness of the proposed wind speed estimator and its use to control the generator speed has been tested under turbulent situations using the FAST software (Fatigue, Aerodynamics, Structures, and Turbulence), for large scale Megawatt turbine.

Development of 3MW Wind Turbine for IEC Wind Class IIa (3MW급 IEC Wind Class IIa 풍력발전시스템 개발)

  • Lee, K.H.;Lee, S.I.;Woo, S.W.;Oh, I.G.;Park, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.236-239
    • /
    • 2011
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$(TC IIa) which is a trade name of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$(TC IIa) has been designed in consideration of high Reliability, Availability, Maintainability and Serviceability (RAMS) and low cost of electricity (CDE) for the TC IIa condition based on GL guideline. An integrated drive-train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in partial load operation and grid-friendly system for both 50 Hz and 60 Hz. A pitch-regulated variable speed control system has been introduced to control wind turbine power while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements.

  • PDF

A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed (다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계)

  • 서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

Development of PCS for Doubly-fed Induction-type Wind Turbine (이중여자 유도형 풍력발전기 제어를 위한 PCS 개발)

  • Jeong, Byoung-Chang;Chung, Yong-Ho;Kim, Sung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1182-1183
    • /
    • 2008
  • In this paper, we develop PCS for doubly-fed induction-type wind generator(DFIG). PCS consists of a converter set and a controller. PCS controls the active power of wind generator and the reactive power of wind turbine system according to rotating speed, instantaneous power, grid quality, and order by transmission system operator.

  • PDF

Power performance Testing of Small Wind Turbine Generator System (소형 풍력발전시스템의 출력성능검사)

  • Kim, Hyeon-Ki;Kim, Byeong-Min;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.123-128
    • /
    • 2011
  • In this study, procedures, a power performance testing system of Wind Turbine System Research Center of Kangwon National University is introduced. Test prodedures and results are presented on a stand-alone vertical-axis 200W wind turbine manufactured by Geum-Poong Energy Inc.. Power performance test is performed according to IEC standard. The test results are compared with the power performance standard. Also, the effects of normalization and disturbed sectors are considered.

  • PDF

Ride-Through Technique for PMSG Wind Turbines using Energy Storage Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.733-738
    • /
    • 2010
  • This paper deals with a ride-through technique for permanent-magnet synchronous generator (PMSG) wind turbine systems using energy storage systems (ESS). A control strategy which consists of current and power control loops for the energy storage systems is proposed. By increasing the generator speed, some portion of the turbine power can be stored in the system inertia. Therefore, the required energy capacity of the ESS can be decreased, which results in a low-cost system. In addition, the power fluctuations due to wind speed variations can be smoothened by controlling the ESS appropriately. The effectiveness of the proposed method is verified not only by the simulation results for a 2[MW] PMSG wind turbine system, but also by the experiment results for a reduced-scale turbine simulator.

The MPPT Control Method of the PMSG Wind Generation System using the Turbine Model with a Squirrel Cage Induction Motor (농형 유도기 터빈 모델을 이용해 구현한 영구자석 동기기 풍력발전 시스템의 MPPT 제어)

  • Lee, Joon-Min;Kim, Dong-Hwa;Shin, Hye-Su;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This paper presents the MPPT(Maximum Power Point Tracking)control method of the PMSG wind generation system using the turbine model with a squirrel cage induction motor. The torque of squirrel cage induction turbine model is controlled by mathematization of speed characteristics of real blade. In this paper, maintenance and cost issues into consideration, except for previous method using information of the velocity of the wind speed sensor, the algorithm is presented. The algorithm is controlled by tracking the optimal point, the generator speed and maximum grid power. The vector controls of the generator side converter and the grid side converter are controlled respectively to obtain maximum torque and regulate unity power factor. With Psim simulations and experiments, the efficiency of squirrel cage induction turbine model and the validity of control algorithm are verified.