• Title/Summary/Keyword: Wind Tunnel

Search Result 1,785, Processing Time 0.028 seconds

High Speed Wind Tunnel Test of KHST Pantograph (한국형 고속전철용 판토그라프의 풍동소음시험)

  • 정경렬;김상헌;박수홍;김휘준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1215-1220
    • /
    • 2001
  • Wind tunnel test of a new pantograph, that is developed through the KHST project, was performed in RTRI wind tunnel test center of Japan end of last June. This paper indtroduces the measurement results and analysis of noise measurement part that is achieved during the wind tunnel test. The maximum measured sound pressure level at 5m shows 102.3dB(A) at 350km/h and it leads to 88.3dB(A) of predicted sound pressure at 25m that satisfy 91dB(A) of evaluation criteria. Major noise sources of the pantograph was identified as a link between upper and lower arm, panhead contact strips and shunt wires.

  • PDF

A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel (풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석)

  • Han, Seok Jong;Lee, Sang Ho;Lee, Jae Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

Optimal wind-induced load combinations for structural design of tall buildings

  • Chan, C.M.;Ding, F.;Tse, K.T.;Huang, M.F.;Shum, K.M.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.323-337
    • /
    • 2019
  • Wind tunnel testing technique has been established as a powerful experimental method for predicting wind-induced loads on high-rise buildings. Accurate assessment of the design wind load combinations for tall buildings on the basis of wind tunnel tests is an extremely important and complicated issue. The traditional design practice for determining wind load combinations relies partly on subjective judgments and lacks a systematic and reliable method of evaluating critical load cases. This paper presents a novel optimization-based framework for determining wind tunnel derived load cases for the structural design of wind sensitive tall buildings. The peak factor is used to predict the expected maximum resultant responses from the correlated three-dimensional wind loads measured at each wind angle. An optimized convex hull is further developed to serve as the design envelope in which the peak values of the resultant responses at any azimuth angle are enclosed to represent the critical wind load cases. Furthermore, the appropriate number of load cases used for design purposes can be predicted based on a set of Pareto solutions. One 30-story building example is used to illustrate the effectiveness and practical application of the proposed optimization-based technique for the evaluation of peak resultant wind-induced load cases.

Wind-Resistant Safety Reviews of Traffic Signal Structures by Wind Tunnel Tests (풍동실험을 통한 교통신호 구조물의 내풍 안전성 검토)

  • Taik-Nyung Huh
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.833-840
    • /
    • 2024
  • According to recent data from the Korea Meteorological Administration(KMA), the frequency of typhoons around the Korea Peninsula is almost unchanged, but the intensity is on the rise due to climate change. A typhoon that has become so powerful can cause partial or complete damage to the traffic signal structures, limiting the operation of the vehicle and causing traffic congestion. If the traffic signal structure fails to function properly due to the influence of the typhoon, not only the v ehicle operation will be disrupted, but also direct damage to the traffic signal structure will occur. In addition, if the social overhead cost of traffic congestion is included, the recovery cost caused by the typhoon will increase to an extent that it is difficult to estimate. Therefore, in this study, a wind tunnel experiment was performed by producing a wind tunnel model of an existing fixed traffic signal structure and a traffic signal structure in which signs and traffic lights are hinged. Also, The fixed and hinge structures were modeled as 3D finite elements, and wind-resistant analysis was performed by wind speed, and, wind-resistant safety of traffic signal structures were analyzed and examined through wind-resistant analyses. From the comparative analysis of the results of experiment and FE analysis, it was known that the stress reduction rate of the hinge connection structure was at least 30% compared to that of the fixed connection structure from the results of the wind tunnel experiment and FE analysis. And As a result of finite element analysis for the maximum design wind speed of 50m/s, it was found that the maximum stress generated in the existing structure exceeded all the yield stress, but the maximum stress of the hinge connection structure was within the yield stress. Finally The hinge connection structure showed a relatively large stress reduction rate as the wind speed increased and the length of the lateral beam was shorter at the same wind speed.

A Comparison of the Wind Resistance Characteristic of a Container Crane According to the Increase to the Lifting Capacity (권상용량 증가에 따른 컨테이너 크레인의 내풍특성 비교)

  • Lee, Seong-Wook;Kim, Hyung-Hoon;Han, Dong-Seop;Han, Geun-Jo;Kim, Tae-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.204-209
    • /
    • 2007
  • This study was carried out to analyze the effect of wind load on the structural stability of a container crane according to the increase of the lifting capacity using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with $11.52m^{2}$ cross-section area. Each directional drag and overturning moment coefficients were investigated.

  • PDF

Wind load on irregular plan shaped tall building - a case study

  • Chakraborty, Souvik;Dalui, Sujit Kumar;Ahuja, Ashok Kumar
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.59-73
    • /
    • 2014
  • This paper presents the results of wind tunnel studies and numerical studies on a '+' plan shaped tall building. The experiment was carried out in an open circuit wind tunnel on a 1:300 scale rigid model. The mean wind pressure coefficients on all the surfaces were studied for wind incidence angle of $0^{\circ}$ and $45^{\circ}$. Certain faces were subjected to peculiar pressure distribution due to irregular formation of eddies caused by the separation of wind flow. Moreover, commercial CFD packages of ANSYS were used to demonstrate the flow pattern around the model and pressure distribution on various faces. k-${\varepsilon}$ and SST viscosity models were used for numerical study to simulate the wind flow. Although there are some differences on certain wall faces, the numerical result is having a good agreement with the experimental results for both wind incidence angle.

A Study on Wind-Driven Ventilation Performance According to Opening Types in Basement Parking Lots of Apartment - Investigation of Wind Pressure Coefficient by Wind Tunnel Test - (공동주택 지하주차장의 개구유형에 따른 풍력환기 성능에 관한 연구 - 풍동실험에 의한 풍압계수 검토 -)

  • Roh, Ji-Woong
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.37-42
    • /
    • 2011
  • This Paper aims for analyzing the effect of opening types on wind-driven ventilation performance in basement parking lots of apartment. The scale model of basement parking lot was made, wind tunnel tests conducted. Wind pressure of three opening types was measured, wind pressure coefficient calculated. As the result, it showed that the air flow pattern of stack type opening was strongly changed by wind direction, but it was almost not at scuttle vent type. But, as for the difference of wind pressure coefficient, stack type opening was more than the other two types.

A neural network shelter model for small wind turbine siting near single obstacles

  • Brunskill, Andrew William;Lubitz, William David
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.43-64
    • /
    • 2012
  • Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. A neural network-based model has been developed which predicts mean wind speed and turbulence intensity at points in an obstacle's region of influence, relative to unsheltered conditions. The neural network was trained using measurements collected in the wakes of 18 scale building models exposed to a simulated rural atmospheric boundary layer in a wind tunnel. The model obstacles covered a range of heights, widths, depths, and roof pitches typical of rural buildings. A field experiment was conducted using three unique full scale obstacles to validate model predictions and wind tunnel measurements. The accuracy of the neural network model varies with the quantity predicted and position in the obstacle wake. In general, predictions of mean velocity deficit in the far wake region are most accurate. The overall estimated mean uncertainties associated with model predictions of normalized mean wind speed and turbulence intensity are 4.9% and 12.8%, respectively.

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park, Young-Min;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.269-272
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using computational fluid dynamics. For the numerical analysis of wind turbine. Three dimensional Navier-Stokes solver with various turbulence models was tested and realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with experiment and blind test data. Using the present method, numerical simulations for various size of wind tunnel model were carried out and characteristics were observed in detail. The power loss due to the interference between wind turbine and nacelle was also computed for relatively larger nacelle installation in wind tunnel test. The present results showed good correlations with experimental data and reasonable trends of scale effect of wind turbine.

  • PDF

A mathematical model for the along-wind coefficient of tower crane based on the member load

  • Wei Chen;Xianrong Qin;Zhigang Yang
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.347-359
    • /
    • 2023
  • The along-wind coefficient is the key parameter for wind load calculations in tower crane structure design. It is often calculated using overall parameter characteristics, which may lead to inaccurate results. In this study, six types of tower masts and four types of tower jibs with different overall structural characteristics and member characteristics are established. Through wind tunnel force tests and CFD numerical simulation, the along-wind coefficient of the overall structure and each member are obtained. Based on the characteristics of the slenderness ratio and spacing ratio of the members, a mathematical model for calculating the along-wind coefficient of the tower crane structure is proposed. The calculated results are in accordance with the wind tunnel test results. The maximum relative error is -6.25%, and the minimum relative error is 0.68%. To ensure accuracy, it is necessary to calculate the along-wind coefficient of the tower crane structure based on the load of each structure member rather than using overall parameter characteristics.