• Title/Summary/Keyword: Wind Speed Data

Search Result 1,213, Processing Time 0.027 seconds

Development for Estimation Improvement Model of Wind Velocity using Deep Neural Network (심층신경망을 활용한 풍속 예측 개선 모델 개발)

  • Ku, SungKwan;Hong, SeokMin;Kim, Ki-Young;Kwon, Jaeil
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.597-604
    • /
    • 2019
  • Artificial neural networks are algorithms that simulate learning through interaction and experience in neurons in the brain and that are a method that can be used to produce accurate results through learning that reflects the characteristics of data. In this study, a model using deep neural network was presented to improve the predicted wind speed values in the meteorological dynamic model. The wind speed prediction improvement model using the deep neural network presented in the study constructed a model to recalibrate the predicted values of the meteorological dynamics model and carried out the verification and testing process and Separate data confirm that the accuracy of the predictions can be increased. In order to improve the prediction of wind speed, an in-depth neural network was established using the predicted values of general weather data such as time, temperature, air pressure, humidity, atmospheric conditions, and wind speed. Some of the data in the entire data were divided into data for checking the adequacy of the model, and the separate accuracy was checked rather than being used for model building and learning to confirm the suitability of the methods presented in the study.

Sensitivity Test of the Numerical Simulation with High Resolution Topography and Landuse over Seoul Metropolitan and Surrounding Areas (수도권 지역에서의 고해상도 지형과 지면피복자료에 따른 수치모의 민감도 실험)

  • Park, Sung-Hwa;Jee, Joon-Bum;Yi, Chaeyeon
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.309-322
    • /
    • 2015
  • The objective of this study is to evaluate the impact of the high resolution topographies and landuses data on simulated meteorological variables (wind speed at 10 m, temperature at 2 m and relative humidity at 2 m) in WRF. We compare the results with WRF simulation using each resolution of the topographies and landuses, and with 37 AWS observation data on the Seoul metropolitan regions. According to results of using high-resolution topography, WRF model gives better topographical expression over domain. And we can separate more detail (Low intensity residential, high intensity residential, industrial or commercial) using high resolution landuses data. The result shows that simulated temperature and wind speed are generally higher than AWS observation data. However, simulation trend with temperature, wind speed, and relative humidity are similar to observation data. The reason for that is that the high precipitation event occurred in CASE 1 and 2. Temperature have correlation of 0.43~0.47 and standard deviation of $2.12{\sim}2.28^{\circ}C$ in CASE 1, while correlation of more than 0.8 and standard deviation of $3.05{\sim}3.18m\;s^{-1}$ in CASE 2. In case of wind speed, correlation have lower than 0.5 and Standard Deviation of $1.88{\sim}2.34m\;s^{-1}$ in CASE 1 and 2. In statistical analysis shows that using highest resolution (U01) results are more close to the AWS observation data. It can be concluded that the topographies and landuses are important factor that affect model simulation. However, the tendency to always use high resolution topographies and landuses data appears to be unjustified, and optimal solution depends on the combination of scale effect and mechanisms of dynamic models.

The Design of a Wind Speed & Direction Module and a DSP Sensor Interface System for the Meteorological System (기상계측시스템을 위한 풍향.풍속모듈 및 DSP 센서 인터페이스시스템 설계)

  • Song, Do-Ho;Joo, Jae-Hun;Ock, Gi-Tae;Kim, Sang-Gab;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1478-1485
    • /
    • 2007
  • In this paper, a meteorological system including a wind speed & direction module and the DSP(Digital Signal Processor) sensor interface circuit board are proposed. This DSP system accepts and process the informations from a wind speed & direction module, the atmospheric pressure sensor, the ambient air temperature sensor and transfers it to the PC monitoring system. Especially, a wind speed & direction module and a DSP hardware are directly designed and applied. A wind speed & direction module have a construction that it have four film type RID(Resistive Temperature Detectors) resistive sensor adhered around the circular metal body heated constantly by heating coil for obtaining vector informations about wind. By this structure, the module is enabled precise measurement having a robustness about vibration, humidity, corrosion. A sensor signal processing circuit is using TMS320F2812 TI(Texas Instrument) Corporation high speed DSP. An economical meteorological system could be constructed through the data from wind speed & direction module and by the fast processing of DSP interface circuit board.

Field Test and Evaluation of Wind Turbine Noise according to IEC Standards (IEC 규격에 따른 풍력 터빈 소음의 현장 실증)

  • Cheong, Cheol-Ung;Jung, Sung-Su;Cheung, Wan-Sup;Shin, Soo-Hyun;Chun, Se-Jong;Lee, Sang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • The sound measurement techniques in IEC 61400-11 are applied to field test and evaluation of noise emission from 1.5 MW wind turbine generator (WTG) at Yongdang-Lee and 650 kW WTG at Hangwon-Lee in Jeju Island. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. 1.5 MW WTG at Yongdang is found to emit lower sound power than 660 kW one at Hangwon, which seems to be due to lower rotating speed of the rotor of WTG at Yongdang. Equivalent continuous sound pressure level s (ECSPL) of 650 kW WTG at Hangwon vary more widely with speed than those of 1.5 MW WTG at Yongdang. The reason for this is believed to be the fixed blade-rotating speed of WTG at Yongdang. One-third octave band analysis of the measured data show that the band components around 400-500 Hz are dominant for 1.5 MW WTG at Yongdang and those around 1K Hz are dominant for 660 kW WTG at Hangwon.

  • PDF

A Study on Solar Power Generation Efficiency Empirical Analysis according to Temperature and Wind speed (온도와 풍속에 따른 태양광발전 효율 실증분석 연구)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Factors that have influence on solar power generation are specified into three aspects such as meteorological, geographical factors as well as equipment installation. Meteorological factors influence the most among the three. Insolation, sunshine hours, and cloud directly influence on solar power generation, whereas temperature and wind speed have impacts on equipment installation. This paper provides explanation over temperature-wind speed equation by calculating influence of temperature and wind speed on equipment installation. In order to conduct a research, pyranometer, anemometer, air thermometer, module thermometer are installed in 2MWp solar power plant located in South Cholla province, so that real-time meteorological data and generating amount can be analyzed through monitoring system. Besides, if existing and new methods are applied together, accuracy of prediction for generating amount is improved.

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

A Study of the Development of a Korea Wind Chill Temperature Index(III) - Principal Experiment for Development of the Korea Wind Chill Temperature Index - (한국형 체감온도지수 개발연구(III) - 체감온도지수 개발을 위한 본실험 -)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Byung-Soo;Yoon, Sook-Hee;Lee, Jong-Tae;Kim, Eun-Byul;Park, Gil-Un;Kim, Seok-Cheol;Jeong, Kyeong-Seok
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1093-1109
    • /
    • 2008
  • This paper aims to provide a fundamental basis for the improvement and verification of existing wind chill temperature index through the observation of skin temperature change of human body with air temperature and wind speed. For this, we control air temperature $5^{\circ}C$ interval from $0^{\circ}C$ to $-20^{\circ}C$ and classify wind speed by 0, 2, 6 and 8 m $s^{-1}$ respectively. The results are as follows; At each combination of air temperature and wind speed, the reduction rate of the mean skin temperature are different. When our body is exposed to the atmosphere, the mean skin temperature decreases at an exponential rate. The duration of the steady state is more than one hour, while it decreases with strong wind speed. Among 4 sites on a face, the skin temperature of forehead is the highest, followed by one of chin, left cheek, right cheek in orders. Especially, since the skin temperature of right cheek is the lowest, we think that it is suitable to use the data set of the right cheek skin temperature for the development of a Korea wind chill temperature index as a worst case.

Probability-Based Estimates of Basic Design wind Speeds in Korea (확률에 기초한 한국의 기본 설계풍속 추정)

  • 조효남;차철준;백현식
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.62-72
    • /
    • 1989
  • This study presents rational methods for probability-based estimates of basic design wind speeds in Korea and proposes a risk-based nation-wide map of design wind speeds. The paper examines the fittings of the extreme Type I mode to largest yearly non-typhoon wind data from long-term records, and to largest monthly non-typhoon wind data from short-term records. For the estimation of the extreme typhoon wins speed distribution, an indirect analytical method based on a Monte-Carlo simulation is applied to typhoon-prone regions. The basic desig wind speeds for typhoon and non-typhoon winds at the sites of concern are made to be obtained from the mixed model given as a product of the two distributions. The results of this study show that the proposed models and methods provide a practicable tool for the development of the risk-based basic design wind speed and the design wind map from short-term station records currently available in Korea.

  • PDF

A Study on the Flight Initiation Wind Speed of Wind-Borne Debris (강풍에 의한 비산물의 비행 시작 풍속에 관한 연구)

  • Jeong, Houigab;Lee, Seungho;Park, Junhee;Kwon, Soon-duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.105-110
    • /
    • 2020
  • This study provides a method and data for predicting the flight initiation wind speed of wind-borne debris. From the force equilibrium acting on debris including aerodynamic and inertia forces, the equation for predicting the flight initiation wind speeds are presented. Wind tunnel tests were carried out to provide necessary aerodynamic data in the equation for the debris with various aspect ratios. The proposed equation for flight initiation wind speeds was validated from free flying tests in the wind tunnel. The flights of debris were mostly initiated by slip when width to thickness was less than 10, otherwise overturning were dominant. The actual flight initiation speeds were lower than that of the computed ones. The surface boundary layer flow and the gap between the debris and surface might affect the prediction error.

A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics (유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구)

  • Lee, Tae-Jin;Lee, Soon-Hwan;Lee, Hwawoon
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.