• Title/Summary/Keyword: Wind Shear Exponent

Search Result 11, Processing Time 0.021 seconds

Prediction of Wind Shear Exponent in Complex Terrain (복잡지형에서의 Wind Shear Exponent 예측)

  • Kim, Hyeon-Gi;Kim, Byeong-Min;Kim, Jin-Han;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • In this study, we found a relationship between wind shear exponent, ${\alpha}$, and a few factors such as the wind speed, $V$, ruggedness index($RIX$), and the Weibull shape parameter, $k$ of sites in complex terrain in Korea. Wind shear exponents in main wind directions were calculated using wind speed data measured for one year from various heights of eleven meteorological masts in Gangwon province. It was found from the analysis that the reciprocal of the wind shear exponent can be expressed by an exponentially decaying function with respect to a multiple of $V$, $RIX$ and $k$. This result is considered useful to be used to characterize wind characteristics of specific sites in complex terrain in Korea with limited information.

Power Law Exponent in Coastal Area of Northeastern Jeju Island for the Investigation of Wind Resource (풍력자원 조사를 위한 제주 북동부 연안역의 멱지수 분석)

  • Moon, Seo Jeong;Ko, Jung Woo;Lee, Byung Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.65-71
    • /
    • 2013
  • Wind shear means the variation of wind speed according to the height. Wind shear is the important factor affecting the energy production of wind turbines. Power Law is used to extrapolate wind speed data. Normally, a Power Law exponent of 0.143 is used and this is referred to as the 1/7th Power Law. The Power Law exponent is affected by atmospheric stability and surface roughness of the site. Thus, it is necessary to calculate the Power Law exponent of the site exactly for an accurate estimation of wind energy. In this study, wind resources were measured at the three Met-masts which were located in the coastal area of northeastern Jeju Island. The Power Law exponents of the sites were calculated and proposed using measured data. They were 0.141 at Handong, 0.138 at Pyeongdae, and 0.1254 at Udo. We compared annual energy productions which are calculated using a Power Law exponent of 0.143, the proposed value of the Power Law exponents for each site, and the measured data. As a result, the cases of calculating using the proposed values were more similar to the cases using the measured data than the cases using the 0.143 value. Finally, we found that the propsed values of the Power Law exponent are available to more accurately estimate wind resources.

Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju (제주 동복·북촌 풍력발전단지의 바람환경 특성분석)

  • Jeong, Hyeong-Se;Kim, Yeon-Hee;Choi, Hee-Wook
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

Analysis of Wind Shear Patterns and Application of Measure-Correlate-Predict at Pohang Region (포항지역 풍속전단 형태분석과 측정-보정-예측법의 응용)

  • Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.17-20
    • /
    • 2005
  • This paper presents an overview analysis on the observed wind shear at Pohang Steel Works, focusing on diurnal patterns and the frequency of high nighttime shear at the site in case of land breeze. In addition, this paper discusses the importance of accurate shear estimates for reliable evaluation of wind energy density. In order for a long-term correlation of the site, three Measure-Correlate-Predict methods were tested with Pohang wind data and it was shown that the linear MCP gives poor estimation due to the geographic characteristics of complex terrain where the severe transformation of wind direction was accompanied.

  • PDF

Analysis of Wind Shear Patterns and Application of Measure-Correlate-Predict at Pohang Region (포항지역 풍속전단 형태분석과 측정-보정-예측법의 응용)

  • Kim, Hyun-Goo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.26-33
    • /
    • 2005
  • This paper presents and overview analysis on the observed wind shear at Pohang Steel Works. focusing on diurnal patterns and the frequency of high nighttime shear at the site in case of land breeze. In addition, this paper discusses the importance of accurate shear estimation for reliable evaluation of wind energy density. In order for long-term correlation of the site, three Measure-Correlate-Predict methods were tested with Pohang wind data and it was shown that the linear MCP gives poor estimation due to the topological characteristics of complex terrain where the severe transformation of wind direction was accompanied.

  • PDF

A Study of Energy Production Change according to Atmospheric Stability and Equivalent Wind Speed in the Offshore Wind Farm using CFD Program (CFD를 이용한 등가풍속 산정과 대기안정도에 따른 연안풍력단지 발전량 변화 연구)

  • Ryu, Geon-Hwa;Kim, Dong-Hyeok;Lee, Hwa-Woon;Park, Soon-Young;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.247-257
    • /
    • 2016
  • To predict annual energy production (AEP) accurately in the wind farm where located in Seongsan, Jeju Island, Equivalent wind speed (EQ) which can consider vertical wind shear well than Hub height wind speed (HB) is calculated. AEP is produced by CFD model WindSim from National wind resource map. EQ shows a tendency to be underestimated about 2.7% (0.21 m/s) than HB. The difference becomes to be large at nighttime when wind shear is large. EQ can be also affected by atmospheric stability so that is classified by wind shear exponent (${\alpha}$). AEP is increased by 11% when atmosphere becomes to be stabilized (${\alpha}$ > 0.2) than it is convective (${\alpha}$ < 0.1). However, it is found that extreme wind shear (${\alpha}$ > 0.3) is hazardous for power generation. This results represent that AEP calculated by EQ can provide improved accuracy to short-term wind power forecast and wind resource assessment.

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.

Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR (지상기반 라이다의 측정 오차에 영향을 미치는 요인 분석)

  • Kang, Dong-Bum;Huh, Jong-Chul;Ko, Kyung-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.25-37
    • /
    • 2017
  • A study on factors influencing measurement error of Ground-based LiDAR(Light Detection And Ranging) system was conducted in Kimnyeong wind turbine test site on Jeju Island. Three properties of wind including inclined angle, turbulence intensity and power law exponent were taken into account as factors influencing the measurement error of Ground-based LiDAR. In order to calculate LiDAR measurements error, 2.5-month wind speed data collected from LiDAR (WindCube v2) were compared with concurrent data from the anemometer on a nearby 120m-high meteorological mast. In addition, data filtering was performed and its filtering criteria was based on the findings at previous researches. As a result, at 100m above ground level, absolute LiDAR error rate with absolute inclined angle showed 4.58~13.40% and 0.77 of the coefficients of determination, $R^2$. That with turbulence intensity showed 3.58~23.94% and 0.93 of $R^2$ while that with power law exponent showed 4.71~9.53% and 0.41 of $R^2$. Therefore, it was confirmed that the LiDAR measurement error was highly affected by inclined angle and turbulence intensity, while that did not much depend on power law exponent.

Bora wind characteristics for engineering applications

  • Lepri, Petra;Vecenaj, Zeljko;Kozmar, Hrvoje;Grisogono, Branko
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.579-611
    • /
    • 2017
  • Bora is a strong, usually dry temporally and spatially transient wind that is common at the eastern Adriatic Coast and many other dynamically similar regions around the world. One of the Bora main characteristics is its gustiness, when wind velocities can reach up to five times the mean velocity. Bora often creates significant problems to traffic, structures and human life in general. In this study, Bora velocity and near-ground turbulence are studied using the results of three-level high-frequency Bora field measurements carried out on a meteorological tower near the city of Split, Croatia. These measurements are analyzed for a period from April 2010 until June 2011. This rather long period allows for making quite robust and reliable conclusions. The focus is on mean Bora velocity, turbulence intensity, Reynolds shear stress and turbulence length scale profiles, as well as on Bora velocity power spectra and thermal stratification. The results are compared with commonly used empirical laws and recommendations provided in the ESDU 85020 wind engineering standard to question its applicability to Bora. The obtained results report some interesting findings. In particular, the empirical power- and logarithmic laws proved to fit mean Bora velocity profiles well. With decreasing Bora velocity there is an increase in the power-law exponent and aerodynamic surface roughness length, and simultaneously a decrease in friction velocity. This indicates an urban-like velocity profile for smaller wind velocities and a rural-like velocity profile for larger wind velocities. Bora proved to be near-neutral thermally stratified. Turbulence intensity and lateral component of turbulence length scales agree well with ESDU 85020 for this particular terrain type. Longitudinal and vertical turbulence length scales, Reynolds shear stress and velocity power spectra differ considerably from ESDU 85020. This may have significant implications on calculations of Bora wind loads on structures.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.