• Title/Summary/Keyword: Wind Response

Search Result 1,022, Processing Time 0.022 seconds

An efficient method for universal equivalent static wind loads on long-span roof structures

  • Luo, Nan;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.493-506
    • /
    • 2017
  • Wind-induced response behavior of long-span roof structures is very complicated, showing significant contributions of multiple vibration modes. The largest load effects in a huge number of members should be considered for the sake of the equivalent static wind loads (ESWLs). Studies on essential matters and necessary conditions of the universal ESWLs are discussed. An efficient method for universal ESWLs on long-span roof structures is proposed. The generalized resuming forces including both the external wind loads and inertial forces are defined. Then, the universal ESWLs are given by a combination of eigenmodes calculated by proper orthogonal decomposition (POD) analysis. Firstly, the least squares method is applied to a matrix of eigenmodes by using the influence function. Then, the universal ESWLs distribution is obtained which reproduces the largest load effects simultaneously. Secondly, by choosing the eigenmodes of generalized resuming forces as the basic loading distribution vectors, this method becomes efficient. Meanwhile, by using the constraint equations, the universal ESWLs becomes reasonable. Finally, reproduced largest load effects by load-response-correlation (LRC) ESWLs and universal ESWLs are compared with the actual largest load effects obtained by the time domain response analysis for a long-span roof structure. The results demonstrate the feasibility and usefulness of the proposed universal ESWLs method.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Simplified formulas for evaluation of across-wind dynamic responses of rectangular tall buildings

  • Liang, Shuguo;Li, Q.S.;Zou, Lianghao;Wu, J.R.
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.197-212
    • /
    • 2005
  • Tall buildings under wind action usually oscillate simultaneously in the along-wind and across-wind directions as well as in torsional modes. While several procedures have been developed for predicting wind-induced loads and responses in along-wind direction, accurate analytical methods for estimating across-wind and torsional response have not been possible yet. Simplified empirical formulas for estimation of the across-wind dynamic responses of rectangular tall buildings are presented in this paper. Unlike established empirical formulas in codifications, the formulas proposed in this paper are developed based on simultaneous pressure measurements from a series of tall building models with various side and aspect ratios in a boundary layer wind tunnel. Comparisons of the across-wind responses determined by the proposed formulas and the results obtained from the wind tunnel tests as well as those estimated by two well-known wind loading codes are made to examine the applicability and accuracy of the proposed simplified formulas. It is shown through the comparisons that the proposed simplified formulas can be served as an alternative and useful tool for the design and analysis of wind effects on rectangular tall buildings.

Performance Evaluation of Wind Response Control of High-Rise Buildings by Damping and Stiffness of Outrigger Damper System (아웃리거 댐퍼시스템의 감쇠와 강성에 따른 고층 건물 풍응답 제어 성능 평가)

  • Park, Kwang-Seob;Kim, Yun-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, the concept of an outrigger damper system with a damper added to the existing outrigger system has been developed and applied for dynamic response control of high-rise buildings. However, the study on the structural characteristics and design method of Outrigger damper system is in the early stages. In this study, a 50 story high - rise building was designed and an outrigger damper system with viscoelastic damper was applied for wind response control. The time history analysis was performed by using the kaimal spectrum to create an artificial wind load for a total of 1,000 seconds at 0.1 second intervals. Analysis of the top horizontal maximum displacement response and acceleration response shows that outrigger damper systems are up to 28.33% and 49.26% more effective than conventional outrigger systems, respectively. Also, it is confirmed that the increase of damping ratio of dampers is effective for dynamic response control. However, since increasing the damping capacity increases the economic burden, it is necessary to select the appropriate stiffness and damping value of the outrigger damper system.

Wind-tunnel tests on high-rise buildings: wind modes and structural response

  • Sepe, Vincenzo;Vasta, Marcello
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.37-56
    • /
    • 2014
  • The evaluation of pressure fields acting on slender structures under wind loads is currently performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global and local wind actions is crucial for design purpose. This paper considers a particular slender structure under wind excitation, representative of most common high-rise buildings, whose experimental wind field on in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for several angles of attack of the wind. It is shown that an efficient reduced model to represent structural response can be obtained by coupling the classical structural modal projection with the so called blowing modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In particular, the elaboration of experimental data shows that the first few blowing modes can effectively represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number of blowing modes is required when the covariance wind tensor is used to decompose the wind field.

Investigation of wind actions and effects on the Leaning Tower of Pisa

  • Solari, Giovanni;Reinhold, Timothy A.;Livesey, Flora
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1998
  • This paper describes wind investigations for the Leaning Tower of Pisa which were conducted as part of an overall evaluation of its behaviour. Normally a short, stiff and heavy building would not be a candidate for detailed wind analyses. However, because of extremely high soil pressures developed from its inclination, there has been increasing concern that environmental loading such as wind actions could combine with existing conditions to cause the collapse of the tower. The studies involved wind assessment at the site as a function of wind direction, analysis of historical wind data to determine extreme wind probabilities of occurrence, estimation of structural properties, analytical and boundary layer wind tunnel investigations of wind loads and evaluation of the response with special concern for loads in the direction of inclination of the tower and significant wake effects from the neighboring cathedral for critical wind directions. The conclusions discuss the role of wind on structural safety, the precision of results attained and possible future studies involving field measurements aimed at validating or improving the analytical and boundary layer wind tunnel based assessments.

Wind-induced responses of Beijing National Stadium

  • Yang, Q.S.;Tian, Y.J.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.239-252
    • /
    • 2011
  • The wind-induced mean, background and resonant responses of Beijing National Stadium are investigated in this paper. Based on the concepts of potential and kinetic energies, the mode participation factors for the background and the resonant components are presented and the dominant modes are identified. The coupling effect between different modes of the resonant response and the coupling effect between the background and resonant responses are analyzed. The coupling effects between the background and resonant components and between different modes are found all negligible. The mean response is approximately analogous to the peak responses induced by the fluctuating wind. The background responses are significant in the fluctuating responses and it is much larger than the resonant responses at the measurement locations.

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee Cheol-Ho;Kim Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.652-659
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and linear time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Both spectrum-compatible artificial accelerograms and recorded accelerograms were used as input ground motions for the time history analysis. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. Time history analysis results generally tended to underestimate the seismic response as compared to those of response spectrum analysis.

  • PDF

Turbulence Effects on Wind-Induced Response of Rectangular Sections with Fairing (페어링부착단면의 풍응답특성에 미치는 난류효과에 관한 연구)

  • Kim Heeduck;Kim Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.439-442
    • /
    • 2002
  • In this study, a turbulence simulation is carried out in a suction type wind tunnel using grids, where turbulent flows with various turbulence intensity are successfully produced by the change of grid size, arrangement of grids and settling position, respectively. Response tests of rectangular cylinder models with aspect ratio of 2 and 4 are carried out in smooth flow and generated turbulent flows. Additionally, two types of fairing are considered such as right triangle and regular triangle. The effects of wind velocity fluctuations and fairing are discussed on vortex-induced oscillation.

  • PDF