• Title/Summary/Keyword: Wind Resource

Search Result 333, Processing Time 0.025 seconds

Study on Noise and Low Frequency Noise generated by Wind Power plant(Wind Farm) (풍력발전시설에서 발생하는 환경소음 및 저주파음에 관한 연구)

  • Park, Young-Min;Choung, Tae-Ryang;Son, Jin Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.425-434
    • /
    • 2011
  • The energy produced by wind power generation is a clean energy product because it is acquired by using renewable resource. Wind power plants("wind farms), in Korea, have been built and operated as 345.6MW facilities from 2001 until now 2009. Nevertheless, environmental issues regarding construction of wind power plants have arisen. accordingly it is time to consider the environmental and social issues of wind power in accordance with the government's policy objectives of increased wind power production. In this study, we investigated the influence that noise and low frequency noise caused by Wind power plants have on neighborhood and residents. We also sought solutions to these issues. In order to analyze the issues of wind power facilities, we compared and examined precedents and the solutions for noise and low frequency noise in Europe, the United states and Japan. We intended to examine the influences of wind power facilities and propose alternative in dealing with these issues.

Wind field simulation over complex terrain under different inflow wind directions

  • Huang, Wenfeng;Zhang, Xibin
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.239-253
    • /
    • 2019
  • Accurate numericalsimulation of wind field over complex terrain is an important prerequisite for wind resource assessment. In this study, numerical simulation of wind field over complex terrain was further carried out by taking the complex terrain around Siu Ho Wan station in Hong Kong as an example. By artificially expanding the original digital model data, Gambit and ICEM CFD software were used to create high-precision complex terrain model with high-quality meshing. The equilibrium atmospheric boundary layer simulation based on RANS turbulence model was carried out in a flat terrain domain, and the approximate inflow boundary conditions for the wind field simulation over complex terrain were established. Based on this, numerical simulations of wind field over complex terrain under different inflow wind directions were carried out. The numerical results were compared with the wind tunnel test and field measurement data for land and sea fetches. The results show that the numerical results are in good agreement with the wind tunnel data and the field measurement data which can verify the accuracy and reliability of the numerical simulation. The near ground wind field over complex terrain is complex and affected obviously by the terrain, and the wind field characteristics should be fully understood by numerical simulation when carrying out engineering application on it.

Effect of Wind-Wave Misalignment and Yaw Error on Power Performance and Dynamic Response of 15 MW Floating Offshore Wind Turbine (바람-파랑 오정렬과 요 오차가 15 MW급 부유식 해상풍력터빈의 출력 성능과 동적 응답에 미치는 영향)

  • Sangwon Lee;Seongkeon Kim;Bumsuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.26-34
    • /
    • 2024
  • Floating offshore wind turbines (FOWTs) have been developed to overcome large water depths and leverage the abundant wind resource in deep seas. However, wind-wave misalignment can occur depending on the weather conditions, and most megawatt (MW)-class turbines are horizontal-axis wind turbines subjected to yaw errors. Therefore, the power performance and dynamic response of super-large FOWTs exposed simultaneously to these external conditions must be analyzed. In this study, several scenarios combining wind-wave misalignment and yaw error were considered. The IEA 15 MW reference FOWT (v1.1.2) and OpenFAST (v3.4.1) were used to perform numerical simulations. The results show that the power performance was affected more significantly by the yaw error; therefore, the generator power reduction and variability increased significantly. However, the dynamic response was affected more significantly by the wind-wave misalignment increased; thus, the change in the platform 6-DOF and tower loads (top and base) increased significantly. These results can be facilitate improvements to the power performance and structural integrity of FOWTs during the design process.

Feasibility Analysis on Wind Turbine Embedded to Highway Median Strip - Consideration on Vehicle Drag Coefficient (고속도로 중앙분리대형 풍력발전 타당성 분석 - 차량 저항계수 관점에서)

  • Yoon, Seong-Wook;Jeon, Wan-Ho;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.536-538
    • /
    • 2009
  • In recent day, many people are interested in wind resource for generation of electric power. Especially, it is made assessment the possibility of generation of electric power by wind resource originated from running cars and buses in downtown or highway. Moreover bus, driven in the exclusive lane, is focused on possibility of generation electric power on highway because median strip makes fast flow way between bus body and median strip and a pattern will appear in the flow way like drag coefficient. But nobody can guess whether the induced flow will increase or decrease and estimate amount of change of drag coefficient. Solving drag coefficient of bus running highway is the point of this paper. To solve this problem, we use the CFD method. The model is a bus simplified without mirror and gates. In order to assess result, the flow analysis surrounding the bus on the flat road where median strip is not installed has been compared with road with median strip. Solving condition is that the driving highway and median strip are running with 100km/h (27.8m/s).

  • PDF

Verification of the Validity of WRF Model for Wind Resource Assessment in Wind Farm Pre-feasibility Studies (풍력단지개발 예비타당성 평가를 위한 모델의 WRF 풍황자원 예측 정확도 검증)

  • Her, Sooyoung;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.735-742
    • /
    • 2015
  • In this paper, we compare and verify the prediction accuracy and feasibility for wind resources on a wind farm using the Weather Research and Forecasting (WRF) model, which is a numerical weather-prediction model. This model is not only able to simulate local weather phenomena, but also does not require automatic weather station (AWS), satellite, or meteorological mast data. To verify the feasibility of WRF to predict the wind resources required from a wind farm pre-feasibility study, we compare and verify measured wind data and the results predicted by WAsP. To do this, we use the Pyeongdae and Udo sites, which are located on the northeastern part of Jeju island. Together with the measured data, we use the results of annual and monthly mean wind speed, the Weibull distribution, the annual energy production (AEP), and a wind rose. The WRF results are shown to have a higher accuracy than the WAsP results. We therefore confirmed that WRF wind resources can be used in wind farm pre-feasibility studies.

Selection of Promising Wind Farm Sites and Prediction of Annual Energy Production of a Wind Turbine for Eight Islands in Korea (국내 8개 도서지역 대상 풍력발전 유망후보지 선정 및 발전량 예측)

  • Kim, Chan-Jong;Song, Yuan;Paek, Insu
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.13-24
    • /
    • 2017
  • Finding promising wind farm sites in islands of Korea is performed in this study. Total ten islands that have been measuring wind speed and direction using automatic weather stations for at least ten years were subjects of this study. Conditions for finding suitable wind farm sites including wind resource and various exclusion factors were applied and two islands that were found not to be suitable for wind farms were excluded. Micositing of a single wind turbine for the remaining eight islands was performed to estimate the annual energy production and the capacity factor.. Based on the simulation results, the wind farm sites selected within the eight islands were found to be suitable for wind power. The capacity factors were varied between 22.3% and 33.0% for a 100 kW wind turbine having a hub height of 30 m.

Establishment of a Wind Map of the Korean Peninsula I. Evaluation of Offshore Wind Resources Using Remote-Sensing Data (한반도 바람지도 구축에 관한 연구 I. 원격탐사자료를 이용한 해상풍력자원 평가)

  • Kim Hyun-Goo;Lee H.W;Jung W.S
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.63-72
    • /
    • 2005
  • In order to understand regional wind characteristics and to estimate offshore wind resources, a wind map of the Korean Peninsula was established using remote-sensing data from the satellite, U.S. NASA Quik SCAT which has been deployed for the Sea Winds Project since 1999. According to the linear regression result between the wind map data and in-situ marine-buoy data, the correlation factor was greatly improved up to 0.87 by blending the remote-sensing data of Quik SCAT with U.S. NCEP/NCAR CDAS reanalysis data to eliminate precipitation interference and to increase temporal resolution. It is found from the established wind map that the wind speed in winter is prominent temporally and the South Sea shows spatially high energy density over the wind class 6. The reason is deduced that the north-west winds through the Yellow Sea and the north-east winds through the East Sea derived by the low pressure developed in Japan are accelerated passing through the Korea Channel and formed high wind energy region in the South Sea; the same trends are confirmed from the statistical analysis of the meteorological observation data of KMA.

Study on Establishment of a Wind Map of the Korean Peninsula (I. Establishment of a Synoptic Wind Map Using Remote-Sensing Data) (한반도 바람지도 구축에 관한 연구 (I. 원격탐사자료에 의한 종관 바람지도 구축))

  • Kim Hyungoo;Choi Jaeou;Lee Hwawoon;Jung Woosik
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.44-53
    • /
    • 2005
  • To understand general status of the national wind environment and to distinguish potential areas to be developed as a largescale wind farm, a synoptic wind map of the Korean Peninsula is established by processing remote sensing data of the satellite, NASA QuikSCAT which Is deployed for the SeaWinds Project since 1999. According to the validation results obtained by comparing with the measurement data of marine buoys of KMA(Korea Meteorological Administration), the cross-correlation factor Is greatly Improved up to 0.87 by blending the sea-surface dat3 of QuikSCAT with NCEP/NCAR CDAS data. It is found from the established synoptic wind map that the wind speed in winter is prominent temporally and the South Sea shows high energy density up to the wind class 6 spatially. The reason is deduced that the northwest winds through the yellow Sea and the northeast winds through the East Sea derived by the low-pressure developed in Japan are accelerated passing through the Korea Channel and formed high wind energy region in the South Sea; the same trends are confirmed by the statistical analysis of meteorological observation data of KMA.

  • PDF

Calibration Equation for Nacelle Anemometer Derived by LIDAR Measurements (라이다 측정을 이용한 나셀 풍속계 보정식 제안)

  • Kim, Hyun-Goo;An, Hae-Joon;Yang, Seung-Joo;Park, Woo-Jae;Kim, Seok-Woo
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.12-16
    • /
    • 2013
  • The nacelle anemometer mounted behind the blade roots of a wind turbine measures distorted wind speed comparable with free-stream wind because of the wake effects caused dependent upon the operation of the wind turbine and the rotation of its blades. The field campaign was carried out to measure free-stream wind speed at a height identical to the height of the nacelle anemometer by deploying a ground-based remote-sensing equipment, LIDAR. It is derived that a third-order polynomial equation for correcting wind speed measured by the nacelle anemometer to undistorted free-stream wind speed incident to a wind turbine. It is anticipated that the derived correction equation enables wind speed measured by the nacelle anemometer to be used as a precise input for a wind turbine performance test and for developing an active control logic.

A Prediction of Turbulent Characteristics in a Complex Terrain by Linear Theory (선형이론에 의한 복잡지형 내 난류 특성의 예측)

  • Yoon, J.E.;Kyong, N.H.;Kim, S.W.
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • The external conditions for estimating dynamic wind loads of wind turbines, such as the turbulence, the extreme wind, the mean velocity gradients and the flow angles, are simulated over GangWon Wind Energy Test Field placed in one of the most complex terrain in Korea. Reference meteorological data has been gathered at a height of 30m from 2003 to 2004 with a ultrasonic anemometer. The absolute value of the spectral energy are simulated and the verification of this prediction has been carried out with comparing to the experimental data. The most desirable place for constructing new wind turbine are resulted as Point 2 and Point 3 due to the lower value of Turbulence Intensity and the higher value of wind resource relatively.