• Title/Summary/Keyword: Wind Profile

Search Result 280, Processing Time 0.027 seconds

Severe Downslope Windstorms of Gangneung in the Springtime (봄철 강릉지역에서 발생하는 강풍에 대한 연구)

  • Jang, Wook;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.207-224
    • /
    • 2008
  • Severe downslope windstorms observed at Gangneung, Korea in the springtime during the last 30 years are studied to understand their generation mechanisms. 92 severe wind cases are selected for which the maximum instantaneous wind speeds exceed two standard deviation of total mean plus ($18.7ms^{-1}$). They are categorized into the three mechanisms (hydraulic jump, partial reflection, and critical-level reflection) proposed in previous studies based on the flow condition, which is calculated using the wind and temperature profile observed at one upstream rawinsonde station, Osan. Among the three, partial reflection is found to be the most frequent mechanism for the last 30 years (1976 - 2005). To understand the role of inversion in generating severe downslope windstorms, horizontal velocity perturbation was calculated analytically for the atmosphere with an inversion layer. It turned out that the intensity of downslope wind was increased by inversion layer of specific heights, which are well matched with the observations. For better understanding the generation mechanisms, two-dimensional numerical simulations are conducted for the 92 severe wind cases using the ARPS model. In most simulations, surface wind speed exceeds the value of the severe-wind criterion, and each simulated case can be explained by its own generation mechanism. However, in most simulations, the simulated surface wind speed is larger than the observed, due to ignoring the flow-splitting effect in the two-dimensional framework.

Reducing the wind pressure at the leading edge of a noise barrier

  • Han, Seong-Wook;Kim, Ho-Kyung;Park, Jun-Yong;Ahn, Sang Sup
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.185-196
    • /
    • 2020
  • A method to reduce the wind pressure at the leading edge of a noise barrier was investigated by gradually lowering the height of a member added to the end of the noise barrier. The shape of the lowered height of the added member was defined by its length and slope, and the optimal variable was determined in wind tunnel testing via the boundary-layer wind profile. The goal of the optimal shape was to reduce the wind pressure at the leading edge of the noise barrier to the level suggested in the Eurocode and to maintain the base-bending moment of the added member at the same level as the noise-barrier section. Using parametric wind tunnel investigation, an added member with a slope of 1:2 that protruded 1.2 times the height of the noise barrier was proposed. This added member is expected to simplify, or at least minimize, the types of column members required to equidistantly support both added members and noise barriers, which should thereby improve the safety and construction convenience of noise-barrier structures.

Experimental study on enhancement of drying efficiency of organic solvent using ionic wind (이온풍을 이용한 유기용매의 건조 효율 향상에 관한 실험적 연구)

  • Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • 'Ionic wind' is phenomenon induced by corona discharge which occurs when large electric potential is applied to electrodes with high curvature. The ionic wind has advantage that it could generate forced convective flow without any external energy like separate pump. In this study, 'pin-mesh' arrangement is utilized for experiments. First, optimization of configuration is conducted with local momentum of ionic wind behind the mesh. Empirical equation for prediction about velocity profile was derived using the measured results. Secondly, the enhancement of mass transfer rate of acetone with ionic wind was analyzed. Also, the drying efficiency using a fan which has same flow rate was compared with ionic wind for identification of additional chemical reaction. At last, the drying process of organic solvent was visualized with image processing. As a result, it was shown that the use of ionic wind could dry organic matter four times faster than the natural condition.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

  • Zhao, Shuang;Yan, Zhitao;Savory, Eric;Zhang, Bin
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index - the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30°. Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs

Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition (운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석)

  • Ryu, Ki-Wahn;Seo, Yun-Ho
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.163-169
    • /
    • 2018
  • In this study, wind loads exerted on the offshore wind turbine rotor in parked condition were predicted with variations of wind speeds, yaw angles, azimuth angle, pitch angles, and power of the atmospheric boundary layer profile. The calculated wind loads using blade element theorem were compared with those of estimated aerodynamic loads for the simplified blade shape. Wind loads for an NREL's 5 MW scaled offshore wind turbine rotor were also compared with those of NREL's FAST results for more verification. All of the 6-component wind loads including forces and moments along the three axis were represented on a non-rotating coordinate system fixed at the apex of rotor hub. The calculated wind loads are applicable for the dynamic analysis of the wind turbine system, or obtaining the over-turning moment at the foundation of support structure for wind turbine system.

INTERACTION OF SUPERNOVA REMNANTS WITH STELLAR-WIND BUBBLES (초신성 잔해와 항성풍 공동간의 상호 작용)

  • Lee, Jae-Kwan;Koo, Bon-Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.111-143
    • /
    • 1997
  • We have developed a spherical FCT code in order to simulate the interaction of supernova remnants with stellar wind bubbles. We assume that the density profile of the supernova ejecta follows the Chevalier mode1(1982) where the outer portion has a power-law density distribution($\rho{\propto}\gamma^{-n}$) and the SN ejecta has a kinetic energy of $10^{51}$ ergs. The structure of wind bubble has been calculated with the stellar mass loss rate $\dot{M}=5\times10^{-6}M_{\odot}/yr$ and the wind velocity $\upsilon=2\times10^3$ km/s We have simulated seven models with different initial conditions In the first two models we computed the evolution of SNRs with n=7 and n=14 in the uniform medium The numerical results agree with the Chevalier's similarity solution at early times. When all of the power-law portion of the ejecta is swept up by the reverse shock, the evolution slowly converges to the Sedov-Taylor stage. There is not much difference between the two cases with different n's The other five models simulate SNRs produced inside wind bubbles. In model III, we consider the SN ejecta of 1.4 $M_{\odot}$ and the radius of bubble ~2.76 pc so that ratio of the mass $\alpha(=M_{W.S}/M_{ej}$ is 2. We follow the complex hydrodynamic flows produced by the interaction of SN shocks with stellar shocks and with the contact discontinuities, In the model III, the time scale for the SN shock to cross the wind shell $\tau_{cross}$ is similar to the time scale for the reverse shock to sweep the power-law density profile $\tau_{bend}$. Hence the SN shock crosses the wind shell. At late times SN shock produces another shell in the ambient medium so that we have a SNR with double shell structure. From the numerical results of the remaining models, we have found that when $\tau_{cross}/\tau_{bend}\leq2$, or equivalently when $\alpha\leq50$, the SNRs produced inside wind bubbles have double shell structure. Otherwise, either the SN shock does not cross the wind shell or even if it crosses at one time, the reverse shock reflected at the center accelerates the wind shell to merge into the SN shock Our results confirm the conclusion of Tenorio-Tagle et a1(1990).

  • PDF

Systematic influence of different building spacing, height and layout on mean wind and turbulent characteristics within and over urban building arrays

  • Jiang, Dehai;Jiang, Weimei;Liu, Hongnian;Sun, Jianning
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.275-289
    • /
    • 2008
  • Large eddy simulations have been performed within and over different types of urban building arrays. This paper adopted three dimensionless parameters, building frontal area density (${\lambda}_f$) the variation degree of building height (${\sigma}_h$), and the staggered degree of building range ($r_s$), to study the systematic influence of building spacing, height and layout on wind and turbulent characteristics. The following results have been achieved: (1) As ${\lambda}_f$ decrease from 0.25 to 0.18, the mean flow patterns transfer from "skimming" flow to "wake interference" flow, and as ${\lambda}_f$ decrease from 0.06 to 0.04, the mean flow patterns transfer from "wake interference" flow to "isolated roughness" flow. With increasing ${\lambda}_f$, wind velocity within arrays increases, and the vortexes in front of low buildings would break, even disappear, whereas the vortexes in front of tall buildings would strengthen and expand. Tall buildings have greater disturbance on wind than low buildings do. (2) All the wind velocity profiles and the upstream profile converge at the height of 2.5H approximately. The decay of wind velocity within the building canopy was in positive correlation with ${\lambda}_f$ and $r_s$. If the height of building arrays is variable, Macdonald's wind velocity model should be modified through introducing ${\sigma}_h$, because wind velocity decreases at the upper layers of the canopy and increases at the lower layers of the canopy. (3) The maximum of turbulence kinetic energy (TKE) always locates at 1.2 times as high as the buildings. TKE within the canopy decreases with increasing ${\lambda}_f$ and $r_s$ but the maximum of TKE are very close though ${\sigma}_h$ varies. (4) Wind velocity profile follows the logarithmic law approximately above the building canopy. The Zero-plane displacement $z_d$ heighten with increasing ${\lambda}_f$, whereas the maximum of and Roughness length $z_0$ occurs when ${\lambda}_f$ is about 0.14. $z_d$ and $z_0$ heighten linearly with ${\sigma}_h$ and $r_s$, If ${\sigma}_h$ is large enough, $z_d$ may become higher than the average height of buildings.

Improvement in Wind Vector from UHF Wind Profiler Radar through Removing Ground Echo (지형에코 제거를 통한 UHF 윈드프로파일러의 바람벡터 개선)

  • Kim, Kwang-Ho;Kim, Park-Sa;Kim, Min-Seong;Kang, Dong-Hwan;Kwon, Byung Hyuk
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.267-280
    • /
    • 2016
  • Ground echo is radar return from stationary targets such as buildings and trees. Wind vectors from the wind profile radar in Gangneung are affected by ground echoes due to the complex mountainous terrain located to the west and the south. These ground echoes make a spurious peak close to the direct current (DC) line signal in Doppler spectra. Wind vectors polluted by ground clutters were determined from spectra of oblique beams. After eliminated the terrain echoes, the accuracy of wind vector compared with radiosonde was improved about 68.4% and its relative coefficient was increased from 0.58 to 0.97.

Large-eddy simulation and wind tunnel study of flow over an up-hill slope in a complex terrain

  • Tsang, C.F.;Kwok, Kenny C.S.;Hitchcock, Peter A.;Hui, Desmond K.K.
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.219-237
    • /
    • 2009
  • This study examines the accuracy of large-eddy simulation (LES) to simulate the flow around a large irregular sloping complex terrain. Typically, real built up environments are surrounded by complex terrain geometries with many features. The complex terrain surrounding The Hong Kong University of Science and Technology campus was modelled and the flow over an uphill slope was simulated. The simulated results, including mean velocity profiles and turbulence intensities, were compared with the flow characteristics measured in a wind tunnel model test. Given the size of the domain and the corresponding constraints on the resolution of the simulation, the mean velocity components within the boundary layer flow, especially in the stream-wise direction were found to be reasonably well replicated by the LES. The turbulence intensity values were found to differ from the wind tunnel results in the building recirculation zones, mostly due to the constraints placed on spatial and temporal resolutions. Based on the validated mean velocity profile results, the flow-structure interactions around these buildings and the surrounding terrain were examined.