• 제목/요약/키워드: Wind Power Generator

검색결과 704건 처리시간 0.031초

Power Control of Doubly-fed Induction Generator for Wind Turbine (이중여자 유도형 풍력발전 시스템의 전력 제어)

  • Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.147-149
    • /
    • 2004
  • 이중여자 유도형 풍력발전 시스템은 권선형 유도기클 사용하며, 고정자 권선은 계통에 직접 연결하고, 전력변환 장치를 사용하여 회전자 권선의 전압을 제어함으로써 발전기의 토오크와 고정자의 무효전력을 제어할 수 있다. 발전기의 토오크는 주어진 풍속에서 최대가 되도록, 고정자의 무효전력은 항상 '0'이 되도록 하였으며, 시뮬레이션을 통하여 검증하였다.

  • PDF

A Study on Wind Generator Braking using Boost Converter (부스트 컨버터를 이용한 풍력 발전기 제동에 관한 연구)

  • Youn, Young-Chan;Moon, Chae-Joo;Chang, Young-Hak
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.177-178
    • /
    • 2012
  • 기존의 기계적인 제동시스템은 고장 및 오작동이 잦고 유지보수가 어렵다. 본 논문에서는 부스트 컨버터를 이용한 전기적인 제동 방법을 제안하였다. 200 [W] 풍력발전기를 대상으로 부스트컨버터 제작 및 동작 실험을 하였다. 풍력발전기와 부스트 컨버터를 연계하여 제동 실험을 한 결과 풍력발전기의 최대 정격출력전압 이상이 되는 지점에서 제동이 되는 것을 확인하였다.

  • PDF

Correlation Analysis of Wind and Solar Power Generation Pattern for Modeling of Renewable Energy (신재생에너지 모델링을 위한 풍력 및 태양광 발전 출력 패턴 상관관계 분석)

  • Kim, Min-Jeong;Park, Young-Sik;Park, Jong-Bae;Roh, Jae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제60권10호
    • /
    • pp.1823-1831
    • /
    • 2011
  • When the RPS(Renewable Portfolio Standards) becomes effective in 2012, the use of renewable energy will be dramatically increased. However, there are no production simulations and demand supply programs that reflect the characteristics of the renewable energy. This paper analyzes correlations of the domestic wind power and solar power generation pattern in different areas and those of these sources' output and load pattern. Based on the regional correlation analysis, an appropriate method that uses a average output of the renewable energy or another modeling that takes account of uncertainty could be selected. Because it's output is dependent on weather condition, we can not control the generation of renewable energy, that is the reason why the correlation between the load and output pattern of sources can be helpful to determine whether the renewable energy is modeled as a generator or load modifier. Through this analysis, a basis will be provided in order to properly model the renewable energy source.

Switching Digital Fuzzy Controller for Hybrid Generation System Using Wind and Photovoltaic Energy (풍력과 태양 에너지를 이용한 하이브리드 발전시스템 구현을 위한 스위칭 디지털 퍼지 제어기 개발)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제16권6호
    • /
    • pp.753-758
    • /
    • 2006
  • We present the development of the digital fuzzy controller for maximum power regulation. A hybrid system that comprises wind and photovoltaic generation subsystems, and battery bank is developed in this paper. We use Takaki-Sugeno (T-S) fuzzy model to deal with the power regulation problem, since each power generator has complex nonlinear terms. The problem for regulation control can be simplified into a stabilization one. Also, in order to utilize the advanced digital device, we perform the intelligent digital redesign method. Finally, the performance of the proposed controller is extensively assessed through computer simulation.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권10호
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

Stress Analysis of the Blade Joint for a Small Wind Turbine (소형풍력터빈 블레이드 체결부의 응력해석)

  • Kim, Deok-Su;Jung, Won-Young;Jung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제36권1호
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, an analysis of the joint that transmits power from the blades to the generator is performed using the FEM (finite element method). The mode shapes and natural frequencies were extracted using experimental modal analysis in order to establish the FEM model. Then, the model was verified by comparing the mode shapes and natural frequencies to those obtained from the ANSYS modal analysis. Dynamic stress analysis was performed at the rated and limited wind speeds considering the wind load and gravity.

Wind load analysis for designing a tracking solar generator (추적식 태양광 발전기 설계를 위한 풍하중 해석)

  • Kim, Young-Eun;Jeong, Kyu-Won;Lee, Jae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제18권2호
    • /
    • pp.672-680
    • /
    • 2017
  • A solar photovoltaic system is composed of a module mounting structure, supporting trunk, and a control unit that supplies generated electrical power to an external power grid or a load. The efficiency of the system depends on the incident solar light, so the mounting structure is installed to face the sun. However, because the sun always moves, systems that track the sun have better efficiency than fixed systems. The structure experiences wind pressure, snow load, seismic load, and structure weight. The wind pressure has the most serious effect on the structure. The pressure was obtained using finite element method for various gaps between modules and angles between the panel and the ground. The wind pressure is lowest when the gap is zero, and it increases with the inclination angle. Based on the results, a mounting structure module was designed.

Development of Power Conditioner Unit for 2MW Doubly-Fed Induction-type Wind Generator (2MW급 이중여자 유도형 풍력발전기용 Power Conditioner Unit 개발)

  • Jeong, Byoung-Chang;Kim, Hee-Jung;Chung, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1236-1237
    • /
    • 2007
  • 본 논문에서는 이중여자 유도형 풍력발전기를 제어하기 위한 Power Conditioner Unit을 개발하였다. Power Conditioner Unit은 크게 전력변환을 담당하는 컨버터와 제어기로 구성된다. 컨버터는 2대를 back-to-back 구조로 연결하여 전력을 양방향으로 제어한다. 제어기는 계통의 전압 상태, 발전기의 회전속도와 발전량, 그리고 계통 운영자의 요구에 따라서 발전기의 발전량과 발전 시스템의 출력 역률 또는 계통전압을 제어한다.

  • PDF

Development of the Prototype of Wave Energy Converter by a Pulley System (도르래를 이용한 파력발전기 프로토 타입 개발에 관한 연구)

  • Jung, Hyun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.133-139
    • /
    • 2010
  • From the ancient times, there are waves in the ocean. And all the moving body have energy. We have a kind of hope to convert the wave energy into electric one. Finally we can find out a power generator mechanism that mainly use the principle of pulleys. We have made drawings for this and completed the wave energy converter. This wave energy converter consists of several pulleys, rope, generator, buoys and anchors. The distance between an anchor and buoy is changed according to the hight of waves. Several sets of anchors, pulleys and buoys can make the movement of rope, and the ropes wind up a converter axis. In case of 1 meter movement of the buoy, the winding distance will be amplified 2 or 3 times if we use several moving and fixed pulleys. Based on this concept, we developed 2 kind of prototypes. One is for the test in the laboratory and the other is for the field test. Through the two test, we could confirm the usability of this mechanism.

Basic study on the EGD Generator of Small Capacity for the Wind Power (풍력을 위한 소용량 EGD 발전기에 관한 기초적 연구)

  • Jhoun, Choon-Saing;Park, Ki-Nam;Lim, Eung-Choon
    • Solar Energy
    • /
    • 제12권3호
    • /
    • pp.126-136
    • /
    • 1992
  • In this paper an EGD generator of small capacity with the operating gases of $O_2,\;N_2$ and air is made and the electric characteristics in relation to energy conversion range length, corona current and gas pressure are investigated. The results are as follows: 1. There is a critical value in conversion range length for maximum open voltage and the critical value increases with fluid velocity. 2. The open voltage increases approximately linearly with corona current. 3. There is a critical value in the gas pressure for maximum open voltage and this pressure of gas decreases with fluid velocity in constant conversion range length.

  • PDF