• Title/Summary/Keyword: Wind Power Fluctuation

Search Result 94, Processing Time 0.025 seconds

Modeling and Analysis of Sangmyeong Wind Farm with HESS (HESS가 연계된 상명풍력발전단지의 모델링과 해석)

  • Shin, Hyun;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.422-423
    • /
    • 2019
  • In accordance with the Carbon-Free Island by 2030 policy of Jeju Special Self-Governing Province, renewable energy sources are increasing in Jejudo Island. Due to the intermittent output characteristics of wind turbines, one of the renewable energy sources, which can cause unbalanced system conditions between the demand load and the power generation of Jejudo Island. The Korea Power Exchange limits the output of wind turbines for stabilizing the Jeju power system. Therefore, this paper proposes a method to supply a limited output of Sangmyeong Wind Farm in Jeju Power system to Energy Storage System(ESS) and Water Electrolysis Device(WED). The voltage and frequency fluctuation of the Jeju power system is checked accordingly. The simulation results are performed using the PSCAD/EMTDC program.

  • PDF

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

Real Option Valuation of a Wind Power Project Based on the Volatilities of Electricity Generation, Tariff and Long Term Interest Rate (발전량, 가격, 장기금리 변동성을 기초로 한 풍력발전사업의 실물옵션 가치평가)

  • Kim, Youngkyung;Chang, Byungman
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For a proper valuation of wind power project, it is necessary to consider volatilities of key parameters such as annual energy production, electricity sales price, and long term interest rate. Real option methodology allows to calculate option values of these parameters. Volatilities to be considered in wind project valuation are 1) annual energy production (AEP) estimation due to meteorological variation and estimation errors in wind speed distribution, 2) changes in system marginal price (SMP), and 3) interest rate fluctuation of project financing which provides refinancing option to be exercised during a loan tenor for commercial scale projects. Real option valuation turns out to be more than half of the sales value based on a case study for a FIT scheme wind project that was sold to a financial investor.

Analysis of the Load Contribution of Wind Power and Photovoltaic Power to Power System in Jeju (제주지역 풍력발전 및 태양광발전의 전력계통 부하기여 분석)

  • Myung, Ho-San;Kim, Hyung-Chyul;Kang, Nam-Ho;Kim, Yeong-Hwan;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • As part of the "Carbon free Island 2030" policy, the local government of Jeju Island is currently working to reduce carbon through renewable energy supply. However, renewable energy is difficult to predict due to intermittent characteristics. If the share of renewable energy increase, it is difficult to plan of supply of electricity to grid due to that characteristic of renewable. In this paper analyze the fluctuation rate and the capacity credit of wind power and PV to find out how much wind power and PV contribute to supply of electricity of power system in Jeju. As a result mean value of variation rate of wind power and PV is about 3%, 5% and capacity credit is about 10% and 2% respectively.

Assessment of Wind Turbine Load and Performance Effects by Yaw Control (풍력 터빈의 요 제어에 따른 하중 및 성능 영향성 평가)

  • Kim, Jin;Kim, Ji Yon;Koh, Jang Wook;Kweon, Ki Yeong
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • The wind generally includes turbulence characteristics in nature. So the yaw errors between wind turbine direction and wind direction occur due to turbulence fluctuation. The yaw errors affect the fatigue load of wind turbine system and power reduction. The components of turbulence intensity are different from those of each site where the wind turbines are installed. We studied that the fatigue load and power efficiency are improved by controlling yaw motions. In this study, we controlled the averaged yaw error time according to site conditions by turbulence intensity.

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

HTS SMES Application Simulation for Power Quality Simulation (전력품질 개선을 위한 HTS SMES 적용 시뮬레이션)

  • Kim, A-Rong;Kim, Gyeong-Hun;Kim, Jin-Geun;Park, Min-Won;Yu, In-Keun;Lee, Sang-Jin;Park, Jung-Do;Yi, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2190-2194
    • /
    • 2010
  • Wind power generation system (WPGS) of Ulleung Island causes frequency and voltage fluctuation due to wind speed variation during night time. Superconducting magnetic energy storage (SMES) system can overcome the fluctuations through the fast response time of energy charging and discharging. The SMES system should be connected to the terminal of the WPGS for frequency stabilization. To demonstrated the effectiveness of SMES system for power quality improvement, Ulleung Island power network was modeled in a real time digital simulator (RTDS). The RTDS-based simulation results of power quality improvement with SMES are investigated and discussed in detail.

Study on the Oversea Technology Development of Electric Power Storage System and It's Domestic Application (전력저장시스템 기술개발 국외동향 분석 및 국내 활용방안 연구)

  • Choi, Kyung-Shik;Yang, Seung-Kwon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • As the technology of a large scale battery have advanced, it's application to the electric power network have been active in foreign country. By providing the electric power energy stored in the electric power storage system when needed, there are many advantages that it is able to reduce the gap between the electric power demand and supply for day and night to increase capacity factor, to upgrade the electric power quality degraded from the unbalance between power demand and supply and to compensate the fluctuation of wind power plant and photovoltaic power generation. In this study, the current application of electric power storage system using battery is introduced in detail, and I have thought out it's application fields based on the foreign examples. These are demand side response, upgrade of the power quality, stabilization of fluctuation of renewable energy and distributed generation for filling elapse.

  • PDF

A Synthetical Study on Power Quality Measurement of Grid-Connected Wind Turbine Generating System based on the IEC International Standards (IEC 국제표준에 따른 계통연계형 풍력터빈 발전기계통의 전력품질 측정방법에 관한 심화연구)

  • Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.197-204
    • /
    • 2014
  • As more and more renewable energy resources are connected into the existing power system and their generation capacities are increasing, the need for regulations to minimize their impacts on the power grid is increasingly growing. And minimizing the irregular impacts made by grid-connected wind generators is important, since the output power generated by renewable energy resources can be changed easily by the weather condition and surrounding environment. In South Korea, an operational technical standard for distributed generation is used as a regulation, in which renewable energy sources including wind power are considered as a kind of distributed generation. In this paper, an international standard, IEC 61400-21, for the grid-connected wind turbine generating system(WTGS) will be introduced and a comprehensive and detailed review on the measuring methods of power quality characteristic parameters for WTGS based on the related IEC standards will be presented. Additionally, some prerequisites for applying the international standards to KEPCO system will be proposed.