• 제목/요약/키워드: Wind Power Energy

검색결과 1,507건 처리시간 0.033초

풍력 발전 특성을 고려한 순간전압강하 평가 (Voltage Sag Assessment Considering the Characteristics of Wind Power)

  • 송영원;박창현
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1571-1577
    • /
    • 2012
  • This paper presents a method for assessing the voltage sag performance of power system involving wind power generation. Wind power generation is considered as one of the most desirable renewable energy sources. However, wind power generation have uncertain energy output and it is difficult to control the output. The existing methods of voltage sag assessment are not reflected the characteristics of wind power generation. Therefore, in order to more accurately assess the voltage sag performance, the probability of wind power operation is evaluated. In this paper, the probability is determined by combining the wind speed model with the output curve of wind turbine. The probability of wind power operation is reflected as a parameter in voltage sag assessment. The proposed method can provide more accurate results of voltage sag assessment for the case involving the wind power generation.

빌딩 내 최대 풍력발전설비 연계를 위한 소형풍력발전원 구성에 관한 연구 (A Study on Configuration of Small Wind Turbines for Maximum Capacity of Wind Power Systems Interconnected With a Building)

  • 이여진;김성열
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.605-612
    • /
    • 2017
  • One of the biggest environmental issues that our world has been facing is climate change. In order to cope with such environmental issues, the world is putting a great deal of effort into energy conservation. The building sector, in particular, consumes 36% of the energy consumed worldwide and emits considerable amount of greenhouse gases. Therefore, introduction of renewable energies in the building sector is highly recommended. Renewable energy sources that can be utilized in the building sector include sunlight, solar heat, geothermal heat, fuel cells and wind power. The wind power generation system which converts wind energy into electrical energy has advantages in that wind is an unlimited and pollution-free resource. It is suitable to be connected to existing buildings because many years of operational experience and the enhanced stability of the system have made it possible to downsize the electrical generator. In case of existing buildings, it is necessary to consider the live loads of the buildings to connect the wind power generation system. This paper, through the connection of the wind power generation with existing buildings, promotes reduction of greenhouse gas emissions and energy independence by reducing energy consumption in the building sector. In order to connect the wind power generation system with an exciting building, the live load of the building and the area of the rooftop should be considered. The installable model is selected by comparing the live load of the building and the load of the wind power generation system. The maximum number of the wind turbines that can be installed is obtained by considering the separation distance between the wind turbines within the area of the rooftop. Installations are divided into single installations and multiple installations of two different types of wind turbines. After determining the maximum installable number, the optimal model that can achieve the maximum annual power generation will be selected by comparing the respective total annual amount of the power generation of different models.

난류강도가 소형 풍력발전기 출력에 미치는 영향 (Turbulence Intensity Effects on Small Wind Turbine Power Performance)

  • 김석우
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.19-25
    • /
    • 2013
  • Energy generation from an instrumented Skystream 3.7 small wind turbine was used to investigate the effect of ambient turbulence levels on wind turbine power output performance. It is widely known that elevated ambient turbulence level results in decreased energy production, especially for large sized wind turbine. However, over the entire wind speed range from cut in to the rated wind speed, the measured energy generation increased as ambient turbulence levels elevated. The impact degree of turbulence levels on power generation was reduced as measured wind speed approached to the rated wind speed of 13m/s.

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

신재생에너지 적용에 따른 화력발전 경제성분석 (Analysis of Economical efficiency for renewable energy in Steam Power Plant)

  • 최경식
    • 환경영향평가
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2014
  • Since the Renewable Portfolio Standard (RPS) would be started in 2012, the use of renewable energy should be 11% of total energy use including bio-fuel in 2030. The economic efficiency for renewable energy in B power plant was considered with the bio-diesel, wind power and solar power. The Net Present Value (NPV) and Benefit/Cost Ratio(BC) were used for the economic efficiency with the cost and benefit analysis. In case of bio-diesel, the cost resulted from the fuel conversion and the benefit would be created with trade and environmental improvement. With regard to wind power and solar power, the construction cost would be required and benefit factors would be same as the bio-diesel. The wind power was the best of economic efficiency of renewable energy as the results of NPV and BC ratio. Whereas, the market of wind power was very popular and the techniques of wind power has been developing rapidly.

도심지 산악지형의 풍력발전 입지선정을 위한 전산유동해석 수치모의 (Numerical Analysis with CFD Model for Site Designation in Urban Mountain Area)

  • 이화운;박순영;이순환;김동혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.498-500
    • /
    • 2009
  • When we urgently need to develop and supply an alternative energy, wind power is growing with much interest because it has relative low cost for generating power and small area for wind turbine. To estimate the wind power resource, it is necessary to make an observation first. Although the large wind farm and resources are near coast and mountain area, the wind energy in urban area has the strong thing of direct access to power generator. In this study, we estimate the probability of wind energy in urban mountain area using A2C (Atmospheric to CFD) model, which is used for horizontally urban scale phenomena. In the steady state results, the site C is most suitable for wind power in the point of the only wind speed. But, estimating the TKE and vertical wind shear, the site B is showing the better results than the site C.

  • PDF

도심 빌딩 옥상에 적용 가능한 풍력발전시스템의 성능 평가 연구 (Performance Evaluation of Vertical Wind Power Generation System Structured on the Downtown Buildings Roof)

  • 나채문;정광섭;김영일;김동혁
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.9-16
    • /
    • 2016
  • This study had the purpose on feasibility judgment through performance forecast of wind power generation system using the cross flow vertical type wind power turbine for the situation of domestic small size wind power technology development. Wind power generation system uses the principle of venturi tube that gathers the wind through the first guide vane, and second guide vein changes the angle of the wind simultaneously by playing the role of venturi tube. After this, wind got out from the second guide vane spins the wind power turbine and has the meaning of judging on the aspect of numerical interpretation the feasibility for the small size wind power generation through wind power generation system that comes out from the back.

퍼지 PI 제어기를 이용한 풍력/디젤 하이브리드 발전시스템의 품질제어 (Power Quality Control of Wind/Diesel Hybrid Power Systems Using Fuzzy PI Controller)

  • 양수형;고정민;부창진;강민제;김정욱;김호찬
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.1-10
    • /
    • 2012
  • This paper proposes a modeling and controller design approach for a wind-diesel hybrid system including dump load. Wind turbine depends on nature such as wind speed. It causes power fluctuations of wind turbine. Excessive power fluctuation at stand-alone power grid is even worse than large-scale power grid. The proposed control scheme for power quality is fuzzy PI controller. This controller has advantages of PI and fuzzy controller. The proposed model is carried out by using Matlab/Simulink simulation program. In the simulation study, the proposed controller is compared with a conventional PI controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-diesel hybrid power system.

새만금 고군산군도의 풍자원 측정 및 분석 (Measurement and Analysis of Wind Energy Potential in Kokunsando of Saemankeum)

  • 심애리;최연성;이장호
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.51-58
    • /
    • 2011
  • Saemankeum is well known for its high speed wind, and it is known that the blueprint of a future city around Saemankeum, including new industrial complex, has been planned. As a result, large-scale offshore wind farm, on the basis of the measurement of wind resource for a long time, can be considered, so that generated electricity can be used to meet the energy demand near the wind farm. Wind speed in Kokunsando of Saemankeum is measured and analyzed with its statistical distribution and wind directions. The probability of wind power resource over Kokunsando of Saemangeum is reviewed with the measured data in one island of Kokunsando. According to measured data, the shape and scale factor of Weibull distribution of wind speed are obtained, and then power density is analyzed as well. Through this study, it is clear that the Saemangeum area has a fluent and abundant wind power source to develop the wind farm in Korea.

A Clustering Approach to Wind Power Prediction based on Support Vector Regression

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.108-112
    • /
    • 2012
  • A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly wind energy is unlimited in potential. However, due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. It is reported that, compared with physical persistent models, statistical techniques and computational methods are more useful for short-term forecasting of wind power. Among them, support vector regression (SVR) has much attention in the literature. This paper proposes an SVR based wind speed forecasting. To improve the forecasting accuracy, a fuzzy clustering is adopted in the process of SVR modeling. An illustrative example is also given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power.