• Title/Summary/Keyword: Wind Power

Search Result 3,031, Processing Time 0.024 seconds

Uncertainty Analysis of Improved Speed Performance of a Ship with an Air-Lubrication System in a Sea Trial (공기윤활시스템 적용 선박의 시운전 속도성능에 대한 불확실성 해석)

  • Seo, Dae-Won;Oh, Jungkeun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.453-459
    • /
    • 2020
  • A sea trial of the speed performance test is the one of the most important means of verifying a ship's performance, and the International Organization for Standardization established a standard for this test in 2015. Environmental disturbances such as wind and waves are always present under real sea conditions, however, so it is impossible to accurately estimate delivered horsepower under ideal conditions. These disruptive influences also make it difficult to evaluate the positive effect of recently developed energy-saving devices. In this study, uncertainty analysis of improved speed performance was carried out using Monte Carlo simulation to confirm the energy-saving efficiency of a ship equipped with an air-lubrication system. The findings showed the average power saving to be 3.2%, with the expanded uncertainty of ± 2.7% at a 95% confidence level (k=2).

Influence of geometric factors on pull-out resistance of gravity-type anchorage for suspension bridge

  • Hyunsung, Lim;Seunghwan, Seo;Junyoung, Ko;Moonkyung, Chung
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.573-582
    • /
    • 2022
  • The geometry of the gravity-type anchorage changes depends on various factors such as the installation location, ground type, and relationship with the upper structure. In particular, the anchorage geometry embedded in the ground is an important design factor because it affects the pull-out resistance of the anchorage. This study examined the effect of four parameters, related to anchorage geometry and embedded ground conditions, on the pull-out resistance in the gravity-type anchorage through two-dimensional finite element analysis, and presented a guide for major design variables. The four parameters include the 1) flight length of the stepped anchorage (m), 2) flight height of the stepped anchorage (n), 3) the anchorage heel height (b), and 4) the thickness of the soil (e). It was found that as the values of m increased and the values of n decreased, the pull-out resistance of the gravity-type anchorage increased. This trend is related to the size of the contact surface between the anchorage and the rock, and it was confirmed that the value of n, which has the largest change rate of the contact surface between the anchorage and the rock, has the greatest effect on the pull-out resistance of the anchorage. Additionally, the most effective design was achieved when the ratio of the step to the bottom of the anchorage (m) was greater than 0.7, and m was found to be an important factor in the pull-out resistance behavior of the anchorage.

Aerodynamic analysis on the step types of a railway tunnel with non-uniform cross-section

  • Li, Wenhui;Liu, Tanghong;Huo, Xiaoshuai;Guo, Zijian;Xia, Yutao
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The pressure-mitigating effects of a high-speed train passing through a tunnel with a partially reduced cross-section are investigated via the numerical approach. A compressible, three-dimensional RNG k-ε turbulence model and a hybrid mesh strategy are adopted to reproduce that event, which is validated by the moving model test. Three step-like tunnel forms and two additional transitions at the tunnel junction are proposed and their aerodynamic performance is compared and scrutinized with a constant cross-sectional tunnel as the benchmark. The results show that the tunnel step is unrelated to the pressure mitigation effects since the case of a double-step tunnel has no advantage in comparison to a single-step tunnel, but the excavated volume is an essential matter. The pressure peaks are reduced at different levels along with the increase of the excavated earth volume and the peaks are either fitted with power or logarithmic function relationships. In addition, the Arc and Oblique-transitions have very limited gaps, and their pressure curves are identical to each other, whereas the Rec-transition leads to relatively lower pressure peaks in CPmax, CPmin, and ΔCP, with 5.2%, 4.0%, and 4.1% relieved compared with Oblique-transition. This study could provide guidance for the design of the novel railway tunnel.

Effect of Number of Shutdown on the Decrease of Performance in PEM Water Electrolysis (PEM 수전해에서 정지횟수가 성능 감소에 미치는 영향)

  • Cheunho Chu;Jongwon Yang;Ilchai Na;Yoonjin Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.202-207
    • /
    • 2023
  • In the case of driving water electrolysis by receiving surplus electricity from solar and wind power generation, operation and stopping must be repeated according to weather fluctuations. When the PEMWE(Polymer Electrolyte Membrane Water Electrolysis) is driven and stopped, the PEM fuel cell is in the same state as the PEM fuel cell due to the residual hydrogen and oxygen, and the high potential of the water electrolysis formed during operation is highly likely to cause degradation of the electrode and membrane even during stopping. In this study, in order to check how much degradation of the electrode and membrane progresses during the repeated driving/shutdown process of PEM water electrolysis, the performance decrease was measured by changing the number of driving/shutdown for 144 hours. Changes in electrode catalyst active area, hydrogen permeability and fluorine emision rate of membranes were analyzed to measure changes in the properties of electrodes and polymer membranes. Overall, the PEMWE performance decreased as the number of stops increased. When stopped 5 times in 144 hours, the IrOx catalyst activity decreased by more than 30%, and the hydrogen permeability increased by 80%, confirming that both the electrode and the membrane were deteriorated.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Understanding Thermodynamics of Operating Voltage and Efficiency in PEM Water Electrolysis System for Carbon Neutrality and Green Hydrogen Energy Transition (탄소중립과 그린 수소에너지 전환을 위한 PEM 수전해 시스템에서 작동 전압 및 효율의 열역학적 이해)

  • HyungKuk Ju;Sungyool Bong;Seungyoung Park;Chang Hyun Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.56-63
    • /
    • 2023
  • The development of renewable energy technologies, such as solar, wave, and wind power, has led to the diversification of water electrolysis technologies, which can be easily coupled with renewable energy sources in terms of economics and scale. Water electrolysis technologies can be classified into three types based on operating temperature: low-temperature (<100 ℃), medium-temperature (300-700 ℃), and high-temperature (>700 ℃). It can also be classified by the type of electrolyte membrane used in the system. However, the concepts of thermodynamic and thermo-neutral voltages calculations and are very important factors in the evaluation of energy consumption and efficiency of water electrolysis technologies, are often confused. This review aims to contribute to a better understanding of the calculation of operating voltage and efficiency of PEM water electrolysis technologies and to clarify the differences between thermodynamic voltage and thermo-neutral voltage.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Optimum position for outriggers of different materials in a high- rise building

  • Nikhil Y. Mithbhakare;Popat D. Kumbhar
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • High-rise structures are considered as symbols of economic power and leadership. Developing countries like India are also emerging as centers for new high-rise buildings (HRB). As the land is expensive and scarce everywhere, construction of tall buildings becomes the best solution to resolve the problem. But, as building's height increases, its stiffness reduces making it more susceptible to vibrations due to wind and earthquake forces. Several systems are available to control vibrations or deflections; however, outrigger systems are considered to be the most effective systems in improving lateral stiffness and overall stability of HRB. In this paper, a 42-storey RCC HRB is analyzed to determine the optimum position of outriggers of different materials. The linear static analysis of the building is performed with and without the provision of virtual outriggers of reinforced cement concrete (RCC) and pre-stressed concrete (PSC) at different storey levels by response spectrum method using finite element based Extended3D Analysis of building System (ETABS) software for determining responses viz. storey displacement, base shear and storey drift for individual models. The maximum allowable limit and percentage variations in earthquake responses are verified using the guidelines of Indian seismic codes. Results indicate that the outriggers contribute in significantly reducing the storey displacement and storey drift up to 28% and 20% respectively. Also, it is observed that the PSC outriggers are found to be more efficient over RCC outriggers. The optimum location of both types of outriggers is found to be at the mid height of building.

Development of a Work Environment Monitoring System for Improving HSE and Production Information Management Within a Shipyard Based on Wireless Communication (무선 통신 기반 조선소 내 HSE 및 생산정보 관리 향상을 위한 작업환경 모니터링 시스템 개발)

  • Chunsik Shim;Jaeseon Yum;Kangho Kim;Daseul Jeong;Hwanseok Gim;Donggeon Kim;Donghyun Lee;Yerin Cho;Byeonghwa Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.367-374
    • /
    • 2023
  • As the Fourth Industrial Revolution accelerating, countries worldwide are developing technologies to digitize and automate various industrial sectors. Building smart factories not only reduces costs through improved process productivity but also allows for preemptive identification and removal of risk factors through the practice of Health, Safety, and Environment (HSE) management, thereby reducing industrial accident risks. In this study, we visualized pressure, temperature, power, and wind speed data measured in real-time via a monitoring GUI, enabling field managers and workers to easily access related information. Through the work environment monitoring system developed in this study, it is possible to conduct economic analysis on per-unit basis, based on the digitization of production management elements and the tracking of required resources. By implementing HSE in shipyards, potential risk factors can be improved, and gas and electrical leaks can be identified, which are expected to reduce production costs.

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode (아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구)

  • Won Beom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.363-368
    • /
    • 2024
  • Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.