• Title/Summary/Keyword: Wind Performance

Search Result 1,887, Processing Time 0.035 seconds

The Analysis of Wind Hole Effect for The Bangpae Kite (방패연의 방구멍 효과에 대한 분석)

  • Kang, Chi-Hang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.561-566
    • /
    • 2014
  • Our Korean traditional cultural inheritance Bangpae Kite has the stable rectangular shield shape decorated with artistic paint or poem and a good flight performance due to the central wind hole. In this paper, to analyse the wind hole effect to kite performance we performed the wind tunnel testing of the various design factor of kite model and air flow visualization passing through the wind hole. As the result of aerodynamic analysis, we knew that the wind hole of kite displays similar function of slot system for the wing high lift device. This fact demonstrates that our ancestor understood the function of slot system and applied effectively to the development of kite flight performance.

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

Construction quality issues in performance-based wind engineering: effect of missing fasteners

  • van de Lindt, John W.;Dao, Thang Nguyen
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.221-234
    • /
    • 2010
  • In light-frame wood construction, missing roof-sheathing fasteners can be a relatively common occurrence. This type of construction makes up the vast majority of the residential building stock in North America and thus their performance in high winds, including hurricanes, is of concern due to their sheer number. Construction quality issues are common in these types of structures primarily because the majority are conventionally constructed and unlike steel and reinforced concrete structures, inspection is minimal except in certain areas of the country. The concept of performance-based wind engineering (PBWE), a relatively new paradigm, relies on the assumption that building performance under wind loads can be accurately modeled. However, the discrepancy between what is designed (and modeled) and what is built (the as-built) may make application of PBWE to light-frame wood buildings quite difficult. It can be concluded from this study that construction quality must be controlled for realistic application of PBWE to light-frame wood buildings.

A novel high performance diffuser design for small DAWT's by using a blunt trailing edge airfoil

  • Alanis, Arturo;Franco, Jesus Alejandro;Piedra, Saul;Jauregui, Juan Carlos
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2021
  • This paper proposes a novel diffuser design for Diffuser Augmented Wind Turbines (DAWT) based on the blunt trailing edge airfoil AF300. Computational Fluid Dynamics (CFD) simulations are carried out to measure the performance of the AF300 diffuser against diffusers made with the shape of other high performance low wind speed airfoils. The results show that the proposed diffuser produces a greater air mass flow increase through the plane of the turbine than the other diffusers and it can be used to increase the performance of a horizontal axis wind turbine.

A New Paradigm for Wind Design

  • M. Burton;M. Tatarsky;I. Ashcroft
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.363-368
    • /
    • 2022
  • For taller buildings with unconventional architecture, refined structural systems or in geographical areas with high wind conditions, performance-based design can be seen as an enhanced design process and is either a supplement to, or alternative to a prescriptive code-based design. The ultimate goal of Performance-Based Wind Design (PBWD) is to result in a building that better addresses key goals of performance over the buildings full life cycle. Major innovations around the use of a PBWD approach include nonlinear dynamic analysis for wind design, limited inelasticity in the main wind force resisting system elements, and system-based performance criteria. This paper discusses potential considerations and benefits made when using a performance-based approach, in addition to the general practicality of use, for the structural design on a few key tall buildings.

Optimization of Glide Performance using Wind Estimator for Unpowerd Air Vehicle without Pitot-Tube (바람센서가 없는 무추력 비행체의 활공 시 대기속도 추정을 통한 유도성능 향상)

  • Kim, Boo-Min;Jin, Jae-Hyun;Park, Jeong-Ho;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • As designing PID control on aircraft, we consider a gain scheduling on altitude and velocity. If pitot tube is not installed in the unpowered air vehicle, the control performance is reduced by the difference between ground speed and air speed with a wind considered. In this paper, a simple guidance controller (LOS: Line of Sight) and the wind estimator using Kalman filter are designed. And we minimize the wind effect through the estimator. Finally, we perform the 6-DOF nonlinear simulation with the wind model to verify the performance of the controller with the wind estimator.

Power Performance Testing and Uncertainty Analysis for a 3MW Wind Turbine (3MW 풍력발전시스템 출력 성능시험 및 불확도 분석)

  • Kim, Keon-Hoon;Hyun, Seung-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.10-15
    • /
    • 2010
  • The installed capacity of wind turbines in KOREA are growing and enlarging by the central government's support program. Thus, the importance of power performance verification and its uncertainty analysis are recognizing rapidly. This paper described the power testing results of a 3MW wind turbine and analysed an uncertainty level of measurements. The measured power curves are very closely coincide with the calculated one and the annual power production under the given Rayleigh wind speed distribution are estimated with the 3.6~12.7% of uncertainty but, in the dominant wind speed region as 7~8m/s, the uncertainty are stably decreased to 6.3~5.3%.

Wind Turbine Simulators for Control Performance Test of DFIG

  • Abo-Khalil, Ahmed;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.192-194
    • /
    • 2007
  • This paper proposes a new wind turbine simulator using a squirrel cage induction for control performance test of DFIG (doubly-fed induction generator). The turbine static characteristics are modeled using the relation between the turbine torque versus the wind speed and the blade pitch angle. The turbine performance is subjected to a real wind speed pattern by modeling the wind speed as a sum of harmonics with a wide range of frequency. The turbine model includes the effect of the tower shadow and wind shear. A pitch angle controller is designed and used to protect the coupled generator by limiting the turbine speed to the maximum value. Experimental results are provided for a 3[kW] wind turbine simulator at laboratory.

  • PDF

Analysis of Female Windsurfers' Performance Using Global Positioning System Information During Competitions (여자 윈드서핑 선수의 경기 중 Global Positioning System 정보를 활용한 경기력 분석)

  • Chun, Sa Bin;Park, Jong Chul;Park, Sang Ha;Kim, Jin Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Objective: This study aimed to identify the different wind speed categories and competitive level among windsurfers through GPS variables to provide the useful information on the development of training programs for enhancing windsurfers' performance. Method: Data from 69 female athletes who participated in 27 races during the 2018-2019 windsurfing season were used for the analysis. Average board speed, total race time, total distance, upwind race time, downwind race time, beam reach race time were collected through GPS. Unconfirmed data were excluded along with penalty point data. The wind conditions were classified as light, light to medium, medium, medium to heavy, and heavy wind, the competitive levels were classified as level 1, level 2, and level 3. Results: As for the average board speed, the level 1 or level 2 group showed higher board speed than the level 3 group in all wind conditions except for the light wind. The total race time and upwind race time showed less time in level 1 or level 2 group than level 3 group in all wind conditions. The total distance, downwind race time and beam reach race time showed less distance and time in level1 group than level 3 group under sufficient wind conditions. Conclusion: Our results show that the aerobic capacity to sustain pumping during upwind course in wind conditions below 15 kts effects performance. In wind conditions of 15 kts or more, indicated that the board control for the fast board speed and small distance required during up, down, beam reach courses had an effect on competition performance. This information can be provided to windsurfers and coaching as basic data for training programs to improve performance.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.