• Title/Summary/Keyword: Wind Measurement

Search Result 856, Processing Time 0.025 seconds

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

A remote long-term and high-frequency wind measurement system: design, comparison and field testing

  • Zhao, Ning;Huang, Guoqing;Liu, Ruili;Peng, Liuliu
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • The wind field measurement of severe winds such as hurricanes (or typhoons), thunderstorm downbursts and other gales is important issue in wind engineering community, both for the construction and health monitoring of the wind-sensitive structures. Although several wireless data transmission systems have been available for the wind field measurement, most of them are not specially designed for the wind data measurement in structural wind engineering. Therefore, the field collection is still dominant in the field of structural wind engineering at present, especially for the measurement of the long-term and high-frequency wind speed data. In this study, for remote wind field measurement, a novel wireless long-term and high-frequency wind data acquisition system with the functions such as remote control and data compression is developed. The system structure and the collector are firstly presented. Subsequently, main functions of the collector are introduced. Also novel functions of the system and the comparison with existing systems are presented. Furthermore, the performance of this system is evaluated. In addition to as the wireless transmission for wind data and hardware integration for the collector, the developed system possesses a few novel features, such as the modification of wind data collection parameters by the remote control, the remarkable data compression before the data wireless transmission and monitoring the data collection by the cell phone application. It can be expected that this system would have wide applications in wind, meteorological and other communities.

Field measurement and CFD simulation of wind pressures on rectangular attic

  • Peng, Yongbo;Zhao, Weijie;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.471-488
    • /
    • 2019
  • Wind pressure is a critical argument for the wind-resistant design of structures. The attempt, however, to explore the wind pressure field on buildings still encounters challenges though a large body of researches utilizing wind tunnel tests and wind field simulations were carried out, due to the difficulty in logical treatments on the scale effect and the modeling error. The full-scale measurement has not yet received sufficient attention. By performing a field measurement, the present paper systematically addresses wind pressures on the rectangular attic of a double-tower building. The spatial and temporal correlations among wind speed and wind pressures at measured points are discussed. In order to better understand the wind pressure distribution on the attic facades and its relationship against the approaching flow, a full-scale CFD simulation on the similar rectangular attic is conducted as well. Comparative studies between wind pressure coefficients and those provided in wind-load codes are carried out. It is revealed that in the case of wind attack angle being zero, the wind pressure coefficient of the cross-wind facades exposes remarkable variations along both horizontal and vertical directions; while the wind pressure coefficient of the windward facade remains stable along horizontal direction but exposes remarkable variations along vertical direction. The pattern of wind pressure coefficients, however, is not properly described in the existing wind-load codes.

Comparative Validation of WindCube LIDAR and Remtech SODAR for Wind Resource Assessment - Remote Sensing Campaign at Pohang Accelerator Laboratory (풍력자원평가용 윈드큐브 라이다와 렘텍 소다의 비교.검증 - 포항가속기 원격탐사 캠페인)

  • Kim, Hyun-Goo;Chyng, Chin-Wha;An, Hae-Joon;Ji, Yeong-Mi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The remote-sensng campaign was performed at the Pohang Accelerator Laboratory where is located in a basin 6km inland from Yeongil Bay. The campaign aimed uncertainty assessment of Remtech PA0 SODAR through a mutual comparison with WindCube LIDAR, the remote-sensing equipment for wind resource assessment. The joint observation was carried out by changing the setup for measurement heights three times over two months. The LIDAR measurement was assumed as the reference and the uncertainty of SODAR measurement was quantitatively assessed. Compared with LIDAR, the data availability of SODAR was about half. The wind speed measurement was fitted to a slope of 0.94 and $R^2$ of 0.79 to the LIDAR measurement. However, the relative standard deviation was about 17% under 150m above ground level. Therefore, the Remtech PA0 SODAR is judged to be unsuitable for the evaluation of wind resource assessment and wind turbine performance test, which require accuracy of measurement.

Field measurement-based wind-induced response analysis of multi-tower building with tuned mass damper

  • Chen, Xin;Zhang, Zhiqiang;Li, Aiqun;Hu, Liang;Liu, Xianming;Fan, Zhong;Sun, Peng
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.143-159
    • /
    • 2021
  • The 246.8-m-tall Beijing Olympic Tower (BOT) is a new landmark in Beijing City, China. Its unique architectural style with five sub-towers and a large tower crown gives rise to complex dynamic characteristics. Thus, it is wind-sensitive, and a double-stage pendulum tuned mass damper (DPTMD) has been installed for vibration mitigation. In this study, a finite-element analysis of the wind-induced responses of the tower based on full-scale measurement results was performed. First, the structure of the BOT and the full-scale measurement are introduced. According to the measured dynamic characteristics of the BOT, such as the natural frequencies, modal shapes, and damping ratios, an accurate finite-element model (FEM) was established and updated. On the basis of wind measurements, as well as wind-tunnel test results, the wind load on the model was calculated. Then, the wind-induced responses of the BOT with the DPTMD were obtained and compared with the measured responses to assess the numerical wind-induced response analysis method. Finally, the wind-induced serviceability of the BOT was evaluated according to the field measurement results for the wind-induced response and was found to be satisfactory for human comfort.

Wind tunnel effect analysis for MEXICO wind turbine model (MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석)

  • Shin, Hyungki;Lim, Jongsoo;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

The Development of Offshore Wind Resource Measurement System and Remote Monitoring System (해상기상관측 시스템 및 실시간 원격 모니터링시스템 개발)

  • Ko, Suk-Whan;Jang, Moon-Seok;Lee, Youn-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.72-77
    • /
    • 2011
  • The purpose for installation of offshore weather station is a measurement of wind resources and so on. If weather station is operated, it will be possible to analysis for wind resource and arrangement of wind farm by using measured data. In this paper, we carried out the development of offshore wind resource measurement system for measuring offshore wind resource. Also, In order to monitor for real-time wind data with 1 Hz, we installed the wireless transmission system. All wind characteristic data are sent to the server PC through the this system is connected outport of DataLogger. Transmitted wind data were used in order to look at in the Web-page and tablet PC on a real time basis in a graph. In this paper, we will introduce about the wind resource measurement and remote monitoring system that is the result of study.

The study of load measurement on U50 wind turbine (U50 풍력발전기 하중측정 실증연구)

  • Cho, Joo-Suk;Hong, Hyeok-Soo;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.114-122
    • /
    • 2007
  • This paper addresses the measurement of structural loads on the Unison U50 wind turbine. The load measurement are carried out to determine the actual loads acting on a wind turbine. This is needed not only the certification process but also improving the technical development for prototype wind turbine. The measurement system is consists of measuring load, operating quantities and meteorological signal. All data that occur during the operating of a WT are stored the data acquisition system automatically. With using the measured data, load spectrum and equivalent load are evaluated according to IEC61400-13 "Measurement of mechanical loads".

  • PDF

The study of load measurement on U50 wind turbine (U50 풍력발전기 하중측정 실증연구)

  • Cho, Joo-Suk;Hong, Hyeok-Soo;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune;Gil, Kye-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.341-344
    • /
    • 2007
  • This paper addresses the measurement of structural loads on the Unison U50 wind turbine. The load measurement are carried out to determine the actual loads acting on a wind turbine. This is needed not only the certification process but also improving the technical development for prototype wind turbine. The measurement system is consists of measuring load, operating quantities and meteorological signal. All data that occur during the operating of a WT are stored the data acquisition system automatically. With using the measured data, load spectrum and equivalent load are evaluated according to IEC61400-13 "Measurement of mechanical loads".

  • PDF