• Title/Summary/Keyword: Wind Field

Search Result 1,597, Processing Time 0.032 seconds

A neural network shelter model for small wind turbine siting near single obstacles

  • Brunskill, Andrew William;Lubitz, William David
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.43-64
    • /
    • 2012
  • Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. A neural network-based model has been developed which predicts mean wind speed and turbulence intensity at points in an obstacle's region of influence, relative to unsheltered conditions. The neural network was trained using measurements collected in the wakes of 18 scale building models exposed to a simulated rural atmospheric boundary layer in a wind tunnel. The model obstacles covered a range of heights, widths, depths, and roof pitches typical of rural buildings. A field experiment was conducted using three unique full scale obstacles to validate model predictions and wind tunnel measurements. The accuracy of the neural network model varies with the quantity predicted and position in the obstacle wake. In general, predictions of mean velocity deficit in the far wake region are most accurate. The overall estimated mean uncertainties associated with model predictions of normalized mean wind speed and turbulence intensity are 4.9% and 12.8%, respectively.

Updates to the wind tunnel method for determining design loads in ASCE 49-21

  • Gregory A. Kopp
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • The paper reviews and discusses the substantive changes to the ASCE 49-21 Standard, Wind Tunnel Testing for Buildings and Other Structures. The most significant changes are the requirements for wind field simulations that utilize (i) partial turbulence simulations, (ii) partial model simulations for the flow around building Appurtenances, along with requirements for determining wind loads on products that are used at multiple sites in various configurations. These modifications tend to have the effect of easing the precise scaling requirements for flow simulations because it is not generally possible to construct accurate models for small elements placed, for example, on large buildings at the scales typically available in boundary layer wind tunnels. Additional discussion is provided on changes to the Standard with respect to measurement accuracy and data acquisition parameters, such as duration of tests, which are also related to scaling requirements. Finally, research needs with respect to aerodynamic mechanisms are proposed, with the goal of improving the understanding of the role of turbulence on separated-reattaching flows on building surfaces in order to continue to improve the wind tunnel method for determining design wind loads.

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF

Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine

  • Zhu, Ying;Shuang, Miao
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.217-227
    • /
    • 2020
  • Based on translation models, both Gaussian and non-Gaussian wind fields are generated using spectral representation method for investigating the influence of non-Gaussian characteristics and directivity effect of wind load on fatigue damage of wind turbine. Using the blade aerodynamic model and multi-body dynamics, dynamic responses are calculated. Using linear damage accumulation theory and linear crack propagation theory, crack initiation life and crack propagation life are discussed with consideration of the joint probability density distribution of the wind direction and mean wind speed in detail. The result shows that non-Gaussian characteristics of wind load have less influence on fatigue life of wind turbine in the area with smaller annual mean wind speeds. Whereas, the influence becomes significant with the increase of the annual mean wind speed. When the annual mean wind speeds are 7 m/s and 9 m/s at hub height of 90 m, the crack initiation lives under softening non-Gaussian wind decrease by 10% compared with Gaussian wind fields or at higher hub height. The study indicates that the consideration of the influence of softening non-Gaussian characteristics of wind inflows can significantly decrease the fatigue life, and, if neglected, it can result in non-conservative fatigue life estimates for the areas with higher annual mean wind speeds.

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

The Fluctuation of Aerosol Number Concentration by Wind Field Variation during Snowfall at the Southwestern Coastal Area (남서해안지역 강설시 바람장 변화에 따른 에어로솔 수 농도 변동)

  • Lee, Dong-In;Kang, Mi-Young;Seo, Kil-Jong;You, Cheol-Hwan;Park, Sung-Hwa;Kim, Poo-Kyoung;Park, Nam-Sik
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.699-709
    • /
    • 2008
  • To understand the development mechanism of the aerosols in the surface boundary layer, the variation in the aerosol number concentration due to the divergence and convergence of the wind fields was investigated. The aerosol number concentration was measured in the size ranges of $0.3{\sim}10.0{\mu}m$ using a laser particle counter(LPC) from 0000 LST on 03 Feb. to 0600 LST on 07 Feb. 2004 at Mokpo in Korea during snowfall. The Velocity Azimuth Display(VAD) technique was used to retrieve the radar wind fields such as the horizontal wind field, divergence, and deformations including the vertical air velocity from a single Doppler radar. As a result, the distribution of the aerosol number concentration is apparently different for particles larger than $1{\mu}m$ during snowfall, and it has a tendency to increase at the beginning of the snowfall. The increase and decrease in the aerosol concentration due to the convergence and divergence of the wind fields corresponded to the particles with diameters greater than $1{\mu}m$. It is found that the fluctuations in the aerosol number concentration are well correlated with the development and dissipation of snowfall radar echoes due to the convergence and divergence of horizontal wind fields near the surface boundary layer in the inland during the snowfall.

Numerical Estimates of Seasonal Changes of Possible Radionuclide Dispersion at the Kori Nuclear Power Plants (고리 원자력 발전 단지 사고 발생에 따른 방사능 물질 확산 가능성의 계절적 특성 연구)

  • Kim, Ji-Seon;Lee, Soon-Hwan;Park, Kang-Won;Lee, Sung-Gwang;Choi, Se-Young;Cho, Kyu-Chan;Lee, Hyeuk-Woo
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.425-436
    • /
    • 2018
  • To establish initial response scenarios for nuclear accidents around the Kori nuclear power plants, the potential for radionuclide diffusion was estimated using numerical experiments and statistical techniques. This study used the numerical model WRF (Weather Research and Forecasting) and FLEXPART (Flexible Particle dispersion model) to calculate the three-dimensional wind field and radionuclide dispersion, respectively. The wind patterns observed at Gijang, near the plants, and at meteorological sites in Busan, were reproduced and applied to estimates of seasonally averaged wind fields. The distribution of emitted radionuclides are strongly associated with characteristics of topography and synoptic wind patterns over nuclear power plants. Since the terrain around the power plants is complex, estimates of radionuclide distribution often produce unexpected results when wind data from different sites are used in statistical calculations. It is highly probable that in the summer and autumn, radionuclides move south-west, towards the downtown metropolitan area. This study has clear limitations in that it uses the seasonal wind field rather than the daily wind field.

A Study on Correlations of the Gap Ratio of Apartment Houses Arrangement and the Wind Field (공동주택단지배치의 간극비와 바람장의 상관관계에 관한 연구)

  • Moon, Chul-Seong;Oh, Se-Gyu;Cho, Sung-Woo
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • In Korea, the ratio of population in urban areas used to be only 50.1% in 1970, but with the value risen to 90.8% in 2009, urbanization is going on rapidly. Urbanization, which occurs by the rampantly planted buildings, has become major source of raising building density, changing wind direction and reducing wind amount, and such reductions are affecting even inside the building. In each year, among the total energy consumption in Korea, residential portion takes up significant ratio, and specifically the ratio of apartment house is shown to be highest. In order to solve such problem, many studies are being conducted for the improvement of natural ventilation performance. The natural ventilation performance of apartment house are significantly determined by the characteristics of external and internal structure, but in macroscopic perspective, the performance is established fundamentally by the layout characteristics of the main building of the apartment house in preparation for wind conditions. So far researches on raising the thermal comfort through elevation of ventilation performance have been conducted actively, but many of them propose only theoretical concepts deduced through wind path analysis, and do not include any indicator to measure ventilation performance simply only with area data from layout planning stage. Therefore, in this study, gap ratio a wind field measuring indicator was developed, and after the ventilation characteristics by layout types and main building uniformity were identified, the scope of gap ratio efficient for ventilation and that of uniformity were clarified, followed by verification through simulation.

A Formula for Calculating Dst Injection Rate from Solar Wind Parameters

  • Marubashi, K.;Kim, K.H.;Cho, K.S.;Rho, S.L.;Park, Y.D.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.36.3-37
    • /
    • 2009
  • This is an attempt to improve a formula to predict variations of geomagnetic storm indices (Dst) from solar wind parameters. A formula which is most widely accepted was given by Burton et al. (1975) over 30 years ago. Their formula is: dDst*/dt = Q(t) - Dst*(t)/$\tau$, where Q(t) is the Dst injection rate given by the convolution of dawn-to-dusk electric field generated by southward solar wind magnetic field and some response function. However, they did not clearly specify the response function. As a result, misunderstanding seems to be prevailing that the injection rate is proportional to the dawn-to-dusk electric field. In this study we tried to determine the response function by examining 12 intense geomagnetic storms with minimum Dst < -200 nT for which solar wind data are available. The method is as follows. First we assume the form of response function that is specified by several time constants, so that we can calculate the injection rate Q1(t) from the solar wind data. On the other hand, Burton et al. expression provide the observed injection rate Q2(t) = dDst*/dt + Dst*(t)/$\tau$. Thus, it is possible to determine the time constants of response function by a least-squares method to minimize the difference between Q1(t) and Q2(t). We have found this simple method successful enough to reproduce the observed Dst variations from the corresponding solar wind data. The present result provides a scheme to predict the development of Dst 30 minutes to 1 hour in advance by using the real time solar wind data from the ACE spacecraft.

  • PDF

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.