• Title/Summary/Keyword: Wind Farm Design

Search Result 82, Processing Time 0.022 seconds

Case Study of Wind Farm Design Using OpenWind - Youngdeok Wind Farm (OpenWind를 이용한 풍력단지설계 사례연구 -영덕풍력단지)

  • Kim, Hyun-Goo;Hwang, Hyo-Jeong;Kim, Ju-Hyun;Ko, Soo-Hee;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1169-1175
    • /
    • 2010
  • A case study for the design of a wind farm in complex terrain was carried out using the wind farm site analysis software OpenWind, which has an open-source platform and is free to use. The Youngdeok Wind Farm, constructed on mountainous terrain in Korea, was chosen as a model site; the design process reproduced using OpenWind. A comparison of the positions of the wind turbine derived from the OpenWind optimization process and the current positions were in good agreement. The annual energy production predicted by OpenWind compared with the prediction by the micrositing software, WindSim, were also validated to within 1%. Therefore, it was confirmed that OpenWind can be used for a practical wind farm design project. It is also anticipating that this paper will provide a prototype process for the design of a wind farm site and offer a database for the post-evaluation of a constructed wind farm in Korea.

Wind Farm Design Considering Turbulence Intensity on Complex Terrain (복잡지형에서 난류강도를 고려한 풍력발전단지설계)

  • Park, Mi-Ho;Ko, Kyung-Nam;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.1-11
    • /
    • 2013
  • The investigation on wind farm design using CFD technique was carried out to reduce turbulence intensity in a wind farm. A potential wind farm in Gasiri of Jeju Island was selected for the design and the commercial S/W of Meteodyn WT was used for applying CFD technique. The initial layout of wind turbines was derived using WindPRO which is mainly used for wind farm design in Korea. Then, the distribution of turbulence intensity on complex terrain was calculated and visible by Meteodyn WT. Based on the distribution, wind turbines were positioned properly. As a result, wind turbines could be deployed at positions with minimum turbulence intensity as well as maximum Annual Energy Production, AEP, using Meteodyn WT. It is necessary to take into account turbulence intensity in wind farm design to avoid wind turbine failure.

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.

The Study of Onshore Wind Farm Suitability Analysis Process (육상풍력 적지분석 프로세스에 대한 연구)

  • Ko, Jung-Woo;Lee, Byung-Gul
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.457-464
    • /
    • 2016
  • The most wind farm development process in Korea still have not been defined since the history of the wind farm development experiences are very short compared to EU and other developed countries. Therefore, most wind farm development company and researchers have a lot of trouble to implement the wind farm development and need a guideline for the process. Establishing the wind farm needs a complex processes such as transportation system, construction conditions, natural environment and wind conditions etc. Specially, for the restricted development area, the social negotiation and legal minds are necessary. In the case, the decision making process of suitable wind farm area using GIS tool is very useful. However, before using GIS technique, we should understand the development processes and the items for surveying tools. Recently, suitability analysis of selecting Onshore Wind Farm has been studied to consider exclusion analysis to solve the limited develop condition problem. This paper proposed the onshore wind farm development process which can suitable to Korea wind farm environment based on European guideline with GIS tool. To estimate the processes, the processes are divided into two parts, the basic design and wind farm planning. Next, the planning stages are classified into five stages in which the factors for each step were considered.

Modifying the aggregated wind farm model with a controller

  • Badr, Mohammed. A.;Atallah, Ahmed. M.;Bayoumi, Mona A.
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.133-142
    • /
    • 2015
  • A large wind farm can be simplified by the aggregated wind farm models for load flow, steady and transient stability studies. When a fault (such as a short circuit) happens in a large wind farm, some of wind turbines trip while others do not. This paper is to design a controller to modify the aggregated wind farm model in the case of one or more unit removed or added from the complete model. This is without stopping the simulation process during performing the steady state and transient analysis of the whole system. This controller can modulate the status of the wind turbines in the aggregated model in a given farm according to any change in this farm. By this controller, we save effort and time to change the status of wind turbines in the aggregated model. The proposed wind farm is composed of some smaller farms of permanent magnet synchronous generators (PMSGs) and others of squirrel cage induction generators (SCIGs).

Design and Implementation of EMS for Real-Time Power Generation Control of Wind Farm Based on Wake Effect Optimization (후류 영향 최적화 기반 실시간 풍력발전단지 발전 제어용 EMS의 설계 및 구현)

  • Kim, Joon-Hyoung;Sung, Ki-Won;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1097-1108
    • /
    • 2022
  • This paper aimed to design and implement an EMS for real-time power generation control based on wake effect optimization of wind farm, and then to test it in commercial operating wind farm. For real-time control, we proposed the wake band-based optimization and setting the wake effect distance limit, and when the wake effect distance limit was set to 7D in the actual wind farm layout, the calculation time was improved by about 93.94%. In addition, we designed and implemented the script-based EMS for flexible operation logic management in preparation for unexpected issues during testing, and it was installed and tested on a wind farm in commercial operation. However, three issues arose during the testing process. These are the communication interface problem of meteorological tower, the problem of an abnormal wake effect, and the problem of wind turbine yaw control. These issues were solved by modifying the operation logic using EMS's script editor, and the test was successfully completed in the wind farm in commercial operation.

CFD Study on Aerodynamic Power Output of 6 MW Offshore Wind Farm According to the Wind Turbine Separation Distance (CFD를 활용한 6 MW 해상풍력발전단지의 풍력터빈 이격거리에 따른 공기역학적 출력 변화연구)

  • Choi, Nak-Joon;Nam, Sang-Hyun;Jeong, Jong-Hyun;Kim, Kyung-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1063-1069
    • /
    • 2011
  • This paper presents aerodynamic power outputs of wind turbine of 6 MW wind farm composed of 3 sets of 2 MW wind turbine according to the separation distance by using CFD. Layout design including offshore wind farm and onshore wind farm is key factor for the initial investment cost, annual energy production and maintenance cost. For each wind turbine rotor, not actuator disc model with momentum source but full 3-dimensional model is used for CFD and it has a great technical meaning. The results of this study can be applied to the offshore wind farm layout design effectively.

Evaluation of Implementation Potential of Offshore Wind Farm Capacity in Korea Using National Wind Map and Commercial Wind Farm Design Tool (국가바람지도와 상용 단지설계 프로그램을 활용한 국내 해상풍력단지 공급가능 잠재량 산정)

  • Song, Yuan;Kim, Chanjong;Paek, Insu;Kim, Hyungoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.21-29
    • /
    • 2016
  • Commercial wind farm design tools and the national wind map are used to determine the implementation potential of offshore wind power in Korea in this study. For this, the territorial waters of Korea were divided into nine analysis regions and a commercial CFD code was used to obtain wind resource maps at 100m A.S.L. which is the hub height of a 5MW wind turbine used in this study. With the wind resource obtained, factors including water depth, distance from substations, minimum and maximum capacity of a wind farm, distance between turbines and wind farms were considered to determine wind power potential. Also, the conservation areas, military zones, ports, fishing grounds, etc. were considered and excluded. As the result, a total capacity of 6,720 MW was found to be the implementation potential and this corresponds to $3.38MW/km^2$ in API. Also if the distance from the substation is not considered, the potential increased to be 10,040 MW. This offshore wind farm potential is considered enough to satisfy the target of wind farm capacities in the 7th national plan for electricity demand and supply.

Review on The Proposed Offshore Wind Farm Projects Using National Wind Atlas and National Geographic Information (국가바람지도 및 국가지리정보에 의한 국내 해상풍력단지 개발계획의 비교분석)

  • Kim, Hyun-Goo;Hwang, Hyo-Jung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.44-55
    • /
    • 2010
  • The proposed offshore wind farm projects, i.e., Mooudo offshore, Yeonggwang-Gochang offshore, Saemangeum offshore, Imjado offshore and Gadeokdo-Dadeapo offshore, were compared and analyzed using the Korea National Wind Mapand Wind Farm Suitability Assessment System developed by the Korea Institute of Energy Research. The suitability of the proposed areas was comprehensively assessed using geographic, economic constraints, wave condition and wind resource factors, but the focus of this paper was on the geographic constraints and wave conditions. Imjado had several geographical constraints, despite having a good wind power density, while Saemangeum had a relatively low wave height, shallow water depth, close substation and slow tidal current. It is anticipating that the present comparison and analysis could be used as reference guidelines when selecting and preparing the design of large-scale offshore wind farm in the near future.

Assessment of Possible Resources and Selection of Preparatory Sites for Offshore Wind Farm around Korean Peninsula (국내 해역의 해상풍력 가능자원 평가 및 예비부지 선정)

  • Kim, Ji-Young;Kang, Keum-Seok;Oh, Ki-Yong;Lee, Jun-Shin;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.39-48
    • /
    • 2009
  • Recently, developing the offshore wind farm in Korean peninsula is widely understood as essential to achieve the national target for the renewable energy. As part of national plan, KEPRI (Korea electric power research institute) is performing the front running project for the offshore wind farm development that is dedicated to investigate the possible resources based on the economy considering current technological status. It also includes the selection of the first sea area among candidates and optimal design of the offshore wind farm, etc. In this paper the interim results of the project are summarized that the possible capacity for the offshore wind farm can be estimated conservatively around 18 GW regarding the wind power class, sea depth and social constraint. The five western sea areas near Taean, Gunsan, Gochang, Yeonggwang, Sinan were chosen for the candidating sites. Detailed analysis for these sites will be conducted to finalize the first-going offshore wind farm in Korea.

  • PDF