• 제목/요약/키워드: Wind Effect

검색결과 2,271건 처리시간 0.028초

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.

A Review on the Building Wind Impact through On-site Monitoring in Haeundae Marine City: 2021 12th Typhoon OMAIS Case Study

  • Kim, Jongyeong;Kang, Byeonggug;Kwon, Yongju;Lee, Seungbi;Kwon, Soonchul
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.414-425
    • /
    • 2021
  • Overcrowding of high-rise buildings in urban zones change the airflow pattern in the surrounding areas. This causes building wind, which adversely affects the wind environment. Building wind can generate more serious social damage under extreme weather conditions such as typhoons. In this study, to analyze the wind speed and wind speed ratio quantitatively, we installed five anemometers in Haeundae, where high-rise buildings are dense, and conducted on-site monitoring in the event of typhoon OMAIS to determine the characteristics of wind over skyscraper towers surround the other buildings. At point M-2, where the strongest wind speed was measured, the maximum average wind speed in 1 min was observed to be 28.99 m/s, which was 1.7 times stronger than that at the ocean observatory, of 17.0 m/s, at the same time. Furthermore, when the wind speed at the ocean observatory was 8.2 m/s, a strong wind speed of 24 m/s was blowing at point M-2, and the wind speed ratio compared to that at the ocean observatory was 2.92. It is judged that winds 2-3 times stronger than those at the surrounding areas can be induced under certain conditions due to the building wind effect. To verify the degree of wind speed, we introduced the Beaufort wind scale. The Beaufort numbers of wind speed data for the ocean observatory were mostly distributed from 2 to 6, and the maximum value was 8; however, for the observation point, values from 9 to 11 were observed. Through this study, it was possible to determine the characteristics of the wind environment in the area around high-rise buildings due to the building wind effect.

Wind Turbine Simulator Including Pitch Angle control, Shaft Torsional Vibration and Tower Effect

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.411-413
    • /
    • 2005
  • This paper proposes a modeling of wind turbine simulator which includes the dynamic characteristics such as pitch angle control, torsional vibration, and tower effect. Simulation results using PSCAD are provided to show the wind turbine simulator performance.

  • PDF

방향별 후류를 고려한 풍력발전단지 연간 에너지 생산량 예측 프로그램 개발 및 적용 (Development of Wind Farm AEP Prediction Program Considering Directional Wake Effect)

  • 양경부;조경호;허종철
    • 대한기계학회논문집B
    • /
    • 제41권7호
    • /
    • pp.469-480
    • /
    • 2017
  • 풍력발전단지에서 연간 에너지 생산량 예측의 정확도를 위해서는 바람 방향별 후류영향에 의한 풍속감소와 이에 따른 발전량 손실을 효과적으로 계산하여야 한다. 본 연구에서는 연간 에너지 생산량 예측을 위하여 방향별 후류영향을 고려한 계산 프로그램을 개발하고, 예측 적합성을 확인하기 위해 실제 풍력발전단지의 연간 에너지 생산량 분석 결과 및 기존 상용 소프트웨어의 계산결과와 비교하였다. 적용된 계산식들은 기존 이론들을 바탕으로 하고 있어 상용 소프트웨어와 동일하지만 풍향별 후류영향 범위의 계산과정에서 차이가 있다. 비교결과 개발 프로그램은 실제 풍력발전단지 전체 시스템 이용율에 1% 이내로 근접하였고 기존 상용 프로그램을 이용한 예측 결과보다 2% 이상 실제 연간 시스템 이용율에 근접하는 결과를 보여주었다.

Wind characteristics in the high-altitude difference at bridge site by wind tunnel tests

  • Zhang, Mingjin;Zhang, Jinxiang;Li, Yongle;Yu, Jisheng;Zhang, Jingyu;Wu, Lianhuo
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.547-558
    • /
    • 2020
  • With the development of economy and construction technology, more and more bridges are built in complex mountainous areas. Accurate assessment of wind parameters is important in bridge construction at complex terrain. In order to investigate the wind characteristics in the high-altitude difference area, a complex mountain terrain model with the scale of 1:2000 was built. By using the method of wind tunnel tests, the study of wind characteristics including mean wind characteristics and turbulence characteristics was carried out. The results show: The wind direction is affected significant by the topography, the dominant wind direction is usually parallel to the river. Due to the sheltering effect of the mountain near the bridge, the wind speed and wind attack angle along the bridge are both uneven which is different from that at flat terrain. In addition, different from flat terrain, the wind attack angle is mostly negative. The wind profiles obey exponential law and logarithmic law. And the fitting coefficient is consistent with the code which means that it is feasible to use the method of wind tunnel test to simulate complex terrain. As for turbulence characteristics, the turbulence intensity is also related to the topography. Increases sheltering effect of mountain increases the degree of breaking up the large-scale vortices, thereby increasing the turbulence intensity. Also, the value of turbulence intensity ratio is different from the recommended values in the code. The conclusions of this study can provide basis for further wind resistance design of the bridge.

방풍망 효과에 대한 풍동 시뮬레이션 (Wind-Tunnel Simulation on the Wind Fence Effect)

  • 강건
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.20-26
    • /
    • 1998
  • In establishing artificial fences in a certain locality, type of its area or wind blown against them from the front side is primarily considered. Researchers on fences also concentrate on upstream, wand blown against them from the front side In 90$^{\circ}$ angle. In this research, simulations were carried out on the direction of wind changed by each season, and regardless of seasonal wind, on the fences effect of wind direction on fences, throu호 an atmospheric boondary layer wind tunnel. When I compared the velocity distribution of upstream against the fences in 90$^{\circ}$ angle with that of 75$^{\circ}$, 60$^{\circ}$, and 45$^{\circ}$ respectively, the velocity distribution at downstream of the latter cases generally surpassed that of the former one.

  • PDF

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

건물배치에 따른 풍환경 변화 (Consequential Change of Wind Environment in Building Arrangements)

  • 이선영;김상진
    • KIEAE Journal
    • /
    • 제12권2호
    • /
    • pp.117-124
    • /
    • 2012
  • The purpose of this study is to investigate the change of wind environment for different building arrangement. In this study, we analyze outdoor wind environment on different building arrangement that take same floor area ratio using the CFD (Computational Fluid Dynamics) method. We do not consider the effect of temperature. Building arrangements of low density, different hight and a lot of green area will change the effect of wind environment. The eight different arrangements of buildings are studied in this paper. In these calculations, we know the different arrangement of buildings change outdoor wind environments. Especially, reducing the number of building and crossing the different height of buildings have a good kind of wind environment at the same floor ratio. We know that these arrangement of buildings to reduce the heat island phenomena on city plan.

Computational study of road tunnel exposure to severe wind conditions

  • Muhic, Simon;Mazej, Mitja
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.185-197
    • /
    • 2014
  • Ventilation and fire safety design in road tunnels are one of the most complex issues that need to be carefully considered and analysed in the designing stage of any potential upgrade of ventilation and other fire safety systems in tunnels. Placement road tunnels space has an important influence on fire safety, especially when considering the effect of adverse wind conditions that significantly influence ventilation characteristics. The appropriate analysis of fire and smoke control is almost impossible without the use of modern simulation tools (e.g., CFD) due to a large number of influential parameters and consequently extensive data. The impact of the strong wind is briefly presented in this paper in the case of a longitudinally ventilated road tunnel Kastelec, which is exposed to various severe wind conditions that significantly influence its fire safety. The possibility of using CFD simulations in the analysis of the tunnel placement in space terms negative effect of wind influence on the tunnel ventilation is clearly indicated.

전산유체역학을 이용한 풍황탑 차폐효과 해석 (Analysis of the Effect of Met Tower Shadow using Computational Fluid Dynamics)

  • 김태성;이희남;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • When the wind speed is measured by the met-mast sensor it is distorted due to the shadow effect of tower. In this paper the tower shadow effect is analyzed by a computational fluid dynamics code. First three dimensional modeling and flow analysis of the met-mast system were performed. The results were compared with the available experimental wind-tunnel test data to confirm the validity of the meshes and turbulence model. Two-dimensional model was then developed based on the three-dimensional works and experimental data. 2D analysis for various Reynolds numbers and turbulence strengths were then performed to establish the tower shadow effect database, which can be utilized as correction factors for the measured wind energy.

  • PDF