• Title/Summary/Keyword: Wind Assisted Ship Propulsion Technology

Search Result 2, Processing Time 0.014 seconds

Review on the Windship: the Analysis of Hull Form Characteristics with Tall Ship (풍력선박에 대한 고찰: 범선을 통한 선형 특성 해석)

  • June Lee;Jun Soo Park;Sung-chul Shin;Il Ryong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.185-199
    • /
    • 2024
  • Global warming impacts every corner of human life. Maritime transportation and shipbuilding industries are no exception. Recent counteraction in maritime industries is accelerating to meet the zero emission by 2050. Various alternative energy sources have been studied, and recent developments in Europe show that the windship, as a proven technology, can be an attractive candidate to solve the problem. In this paper, as the alternative transportation option, to infer the performances of modern windships, the non-dimensional ratios of past tall ships and windships are studied and reviewed. In addition, the ratios are compared to estimate the position of current and future windships under consideration. It is found that regarding the ratio distributions, the current windships being planned can be either wind-assisted propulsion ships or less fully functional windships than the past tall ships.

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.