• Title/Summary/Keyword: Wilting point

Search Result 30, Processing Time 0.034 seconds

A Study on the Correlations among the Physical and Chemical Properties of Soils in Korea (우리나라 토양(土壤)의 물리화학적(物理化學的) 특성(特性) 상호관계(相互關係)에 관(關)한 연구(硏究))

  • Jo, In-Sang;Hur, Bong-Koo;Kim, Lee-Yul;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.134-139
    • /
    • 1985
  • This study was designed to understand the relationships among the soil physical and chemical properties and to obtain the useful regression to calculate the cation exchange capacity, field capacity, wilting point moisture content and organic matter content. Fourteen soil properties were collected from 315 representative soil series in Korea. Simple and multiple regression were analyzed with the data by grouping land use, drainage class and soil depth. The multiple regression equations which can be calculated the cation exchange capacity from clay and organic matter content were found out. Cation exchange capacity of clay was 22me/100g, and that of organic matter was 103.3me/100g. Moisture retentions, both of wilting point moisture content and field capacity, were closely related to clay and organic matter content. The coefficient of clay was increased with drainage class changed more poor but the coefficient of organic matter was highest at moderately well drained soil. Organic matter content can be calculated by soil texture and pH. Organic matter content was decreased by in creasing the pH. The highly significant regressions were found between base saturation and pH.

  • PDF

Available Soil Water for Textural Class of Korean Soils (우리나라 토양(土壤)의 토성별(土性別) 유효수분(有效水分))

  • Jung, Sug-Jae;Moon, Joon;Kim, Tai-Soon;Hyeon, Geun-Soo;Park, Chang-Seo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.167-172
    • /
    • 1990
  • Some of soil properties already known were selected for the determination of their effect on soil moisture characteristics. Total number of 2,808 representative samples from all over Korea with the exception of Jeju Island were investigated. 1. Available water contents were 4.7 for S, 7.7 for LS, 13.2 for SL, 17.7 for L, 19.2 for SiL, 15.9 for CL, 14.5 for SCL, 18.7 for SiCL, 17.3 for SiC, and 14.9% for C, respectively. 2. Simple regression analysis showed that field capacity and available water content were most strongly associated with sand content in coarse-textured soils, and with organic matter content in fine-textured soils, whereas permanent wilting point was closely associated with clay content. 3. Available water was strongly associated with silt content and also significantly with field capacity, but either not at all or negatively with permanent wilting point. 4. Prediction equations for available water and field capacity were drown out from known soil properties, which can be used for each textural class.

  • PDF

Effects of Water Conditions and Rhizobium Inoculation on the Growth of Wisteria floribunda Seedlings in Slope Soils (절개지 토양에서 수분조건과 근류균 접종이 등나무 유묘생장에 미치는 영향)

  • Park, Chong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.425-435
    • /
    • 2006
  • The objectives of this research were to investigate the drought resistance as well as the growth of Wisteria floribunda seedlings with the soil water conditions. The seedlings for the research were grown in pots with strict water content control on a frame located outdoors. During the experiments, the soil water contents were adjusted to 5, 10, 20, 30, 40, 50, 60, and 70%. In addition, the effects of Rhizobium inoculation on the growth of seedlings were investigated. The experimental results are summarized as follows: 1. The seedlings in the pots with 5% soil water content withered to death due to the water stress. Withering or any distinct growth was not observed from the seedlings in the 10% soil water content. It can be inferred from these results that about 5% of soil water content is the wilting point of W. floribunda seedlings and about 10% is the critical soil water content of its growth in this experiment soils. Therefore, it seems that W. floribunda possesses a good drought resistance. 2. From the analyses of the main growth parameters such as stem elongation, diameter growth, leaf area growth and total dry weight, it was found that the seedling growth can be improved with increasing soil water contents. The relation between each growth parameter(Y) and the soil water contents(W) was well described by a quadratic equation, $Y=a+bW+cW^2$. 3. In soil water contents higher than 20%, the seedling growth(Y) was remarkable along with-its extended growing period, and related to the growing period(D) by a quadratic equation, $Y=a+bD+cD^2$. 4. The artificial inoculation of Rhizobiun promoted the growth of Wisteria floribunda seedlings. 5. Rhizobium was found to be more readily inoculated and to form more root nodules compared to seedlings grown in higher soil water contents.

Effect of water potential of culture solution on water uptake, transpiration and photosynthesis of Panax ginseng (배양액(培養液)의 수분장력(水分張力)이 인삼(人蔘)의 수분흡수(水分吸收) 증산(蒸散) 및 광합성(光合成)에 미치는 영향(影響))

  • Mok, Sung-Kyun;Park, Hoon;Lee, Chong-Hwa;Son, Suk-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.4
    • /
    • pp.115-118
    • /
    • 1981
  • Effect of water potential of culture solution on photosynthesis, transpiration and water uptake was investigated using polyethylene glycol 6000. 1. Even at -0.5 bar of culture solution phothosynthesis was decreased by 20% within 1 hour. Plant in control showed 3.26% loss of initial water for 13 hours suggesting very sensitive in water uptake. 2. Relation between water potential of culture solution (${\psi}$) and water uptake amount (W) 2-year root was ${\psi}=-2.890/e^{2.796W}$ indicating that permanent wilting point will be greater than -2.89 bar. 3. Transpiration considerably decreased with the decrease of water potential and thus by 23.9% at -0.5 bar after 4 hours. 4. From the above results ginseng plant appears to have high root water potential at permanent wilting point and thus very week to water stress due to drought or high salt content in soils.

  • PDF

Influence of Drought on Leaf Growth and Water Potential in Tobacco (한발이 담배 잎의 생장과 수분 포텐셜에 미치는 영향)

  • 이상각;강병화;신주식;변주섭
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.632-639
    • /
    • 1997
  • The experiment which imposed the water stress to tobacco(Nicotiana tabacum L.) plant was carried at the late of maximum growth period. In order to know the influence of drought stress on the growth and developmemt of tobacco leaves of different position and to elucidate the physiological response of plant to various soil water content, stomatal conductance, and leaf water potential were measured. The drought stress at the maximum growth period negatively affected to the overall growth characteristics of shoot. The response of the growth was small at the middle and the lower leaves, and great at the upper leaves. The relative water content of upper, middle, and lower leaves at the fifth day after treatment were 74, 64, and 59%, respectively, as soil water content was reduced by 4.3%. This suggested that the wilting point of tobacco leaf was about 75%. The leaf water potential was -0.58 MPa in control and dropped to -1.20 MPa at the fifth day after treatment. This indicated that wilting of leaf may occur at the condition in which the difference of water potential between treatment and control, well watered, was greater than about 20%. Stomatal conductance at the fifth day after treatment dropped from 12 mol /$\textrm{m}^2 sec^{-1}$ to 0.8 mol /$\textrm{m}^2 sec^{-1}$ in the middle and the upper leaves. Stomatal conductance of lower leaves already matured were not affected highly by drought stress at the maximum growth period, but maturing leaves, middle and upper leaves, were highly affected by limitation of soil water.

  • PDF

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

Effects of Soil Moisture Stress at Different Growth Stage on Growth, Yield and Quality in Rice

  • Park, Hong-Kyu;Choi, Weon-Young;Kang, Si-Yong;Kim, Young-Doo;Choi, Won-Yul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.143-148
    • /
    • 1999
  • Soil moisture condition is an important limiting factor in growth and yield in rice culture. The purpose of this study was to compare the influence on the growth, yield and Quality of rice subjected to soil moisture stress (SMS) at different growth stages. Ajaponica rice cultivar, Dongjinbyeo, was cultured under flooded conditions in a plastic container filled with silty loam soil. The container was subjected to SMS until the initial wilting point (IWP) coincided with about 10% in soil moisture content and about-200 kPa in soil matric potential, and was then irrigated again, at 6 and 5 of main growth stage in 1996 and 1997, respectively. At maturity, the plant height, tiller number, leaf area and top dry weight were decreased more in SMS treatments at the early stage than the late stage. The averaged yield index of SMS to control in both years was lowest at meiosis (62.5%), which primarily resulted from lower percent ripened grain and 1,000 grain weight, and second' reduced the spikelet number per panicle and panicle number per hill, and followed at tillering stage (68.5%) which resulted from the lower production in tiller number and top dry matter during and after SMS treatment. The percent-age of read rice in SMS plants varied with the treatment stage as order of lower at meiosis (44.0%), heading (53.9%), panicle initiation (70.1%), tillering (72.1%), ripening (75.8%) and 5 days after transplanting (DAT) (79.0%). Protein content in brown rice was slightly larger in SMS at late growth stage than the control, while the contents of fat and ash differed very little between SMS and control. Contents of Mg and K and Mg/K in brown rice with SMS were lower at some treatment stages such as at ripening or panicle initiation.

  • PDF

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Kummerowia striata (매듭풀의 생육과 질소고정 활성에 미치는 환경요인의 영향)

  • Song, Seung-Dal;Jung-Sook Park;In-Sook Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.43-54
    • /
    • 1995
  • Effects of environmental factors of N, P, pH, moisture, temperature and oxygen on growth and nitrogen fixation activity of kummerowia striate (Thunb.) Schindler seedling, bearing symbiotic root nodules, were quantitatively analyzed during the growing period. The specific nitrogenase activity (ARA) of nodules showed the maximum value of 187 μmol C₂H₄g fr wt-1 h-1 6 weeks after seeds were germinated. The total nitrogenase activities per plant attained as 1.56, 0.85, 0.09 and 4.0, 1.11, 0.04 μmol C₂H₄hr-1, respectively for the treatments of 1, 3 and 5 mM NO₃ ̄and NH₄+ on the 60th day. While the plant grown in N-free media for 20 days after treatments of 5 mM NH₄+for 40 days resulted in 30 mg fr wt of nodule formation and exhibited the relative activities of 152% and 162% for total and specific ARA in comparison with those of control plant grown with N-free for 60 days. Total biomass and ARA was by 70% and 86% lower in N and P deficiency, respectively. The N and P deficient plot showed 70% and 86% decreases of total biomass and ARA in comparison with those of control. The plant grown with N-free for 20 days after pretreatment with N and P free media for 40 days showed the relative values of 77%, 118% and 150%, respectively for nodule biomass, total and specific ARA in comparison with those of control. The treatment with acid or alkali gradients resulted in significant decreases of nodule biomass and ARA. The optimum temperature and pO₂for ARA were 30°C and 40 kPa, respectively. Two peaks of diurnal variation appeared at 11:00 and 23:00 o'clocks by the continuous light condition. The plants with water stress by temporary wilting point rsulted in 95~97% inhibition for nodule respiration, transpiration and specific ARA. Transpiration and ARA ware recovered to 88% and 38% of those of water unstressed plants, respectively, 6 hours after the plants were rewatered from water stressed condition.

  • PDF

RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST (Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정)

  • Jang, Wonjin;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.123-132
    • /
    • 2019
  • This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.

Effect of Silicate Fertilizer on Growth, Physiology and Abiotic Stress Tolerance of Chinese Cabbage Seedlings (규산비료 시용이 배추 묘의 생장과 환경내성에 미치는 영향)

  • Vu, Ngoc-Thang;Kim, Si-Hong;Kim, Seung-Yeon;Choi, Ki-Young;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • The objective of this study was to evaluate the effect of silicate fertilizer on growth, physiology and abiotic stress tolerance of Chinese cabbage seedlings. Five silicate concentrations (8, 16, 32, 64, and 128mM) and control (non-treatment) were applied to Chinese cabbage seedlings twice a week. Three weeks after application of silicate treatment, seedlings were used for treating abiotic stresses and were assessed for growth and physiological characteristics. Growth parameters significantly increased in 8, 16, and 32mM treatments except 64 and 128mM. Total root surface area, total root length, and number of root tips increased in 8, 16 and 32mM treatments, but they decreased in treated seedlings with 64 and 128mM of silicate. The highest growth parameters and root morphology were observed in 8mM treatment. As for the effect on the seedling physiology, transpiration rates decreased while stomatal diffusive resistance increased to increasing silicate concentration. The application of silicate reduced the electrical conductivity, heating and chilling injury index at high and low temperatures. Silicate enhanced drought tolerance of Chinese seedlings by delaying the starting time of wilting point. The starting time of wilting point in the control was 3 days after discontinuation of irrigation, while in the 8, 64 and 128mM of silicate treatments were 4 days, and the 16 and 32mM treatments were 5 days. All plants were wilted after 5 days in control without irrigation whereas it showed in 8mM treatment after 6 days, in 16, 32, 64, 128mM treatments after 7 days.