• Title/Summary/Keyword: Wilkinson divider

Search Result 98, Processing Time 0.019 seconds

Design of a Compact Wilkinson Power Divider Using Meta-Material Lines (Meta-Material을 이용한 소형 Wilkinson 전력 분배기 설계)

  • Kim, Jeong-Pyo;Kim, Gi-Ho;Yang, Myo-Geun;Seong, Won-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.953-958
    • /
    • 2006
  • A compact Wilkinson power divider with meta-material transmission line(MM-TL) is proposed. The divider is designed by adding the MM-TL with $+90^{\circ}$ phases shifting instead of the ${\lambda}_g/4$ with $-90^{\circ}$ phases shifting at a simple Wilkinson power divider. The MM-TL consists of three phase shifter unit cells and each cell has the characteristics of the $30^{\circ}$ phases shilling and 6 mm length. Therefore, the length of ${\lambda}_g/4(210 mm)$ TL with $-90^{\circ}$ phases shifting at a simple Wilkinson power divider can be reduced to 18 mm and the Wilkinson divider is very compact.

A Study on dual-band Wilkinson power divider with ${\pi}$-shaped parallel stub transmission lines for WLAN (${\pi}$-형 병렬 스터브 전송선로를 이용한 WLAN용 이중대역 Wilkinson 전력 분배기에 대한 연구)

  • Jo, Won-Geun;Kim, Dong-Seek;Ha, Dong-Ik;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.105-112
    • /
    • 2010
  • Recently, wireless communication systems have been developed and the circuits which operate with the broad-band for multiband uses were introduced. However, broad-band circuits have problems that inevitably increase the size. Dual-band circuit operates only two frequency, therefore, it will be able to miniaturize through unnecessary decreased elements. The Wilkinson power divider is the one of the most commonly used components in wireless communication system for power division. Nowaday, the Wilkinson power divider is also demanded dual-band. In this paper, I propose miniaturized dual-band Wilkinson power divider operating at 2.45 GHz and 5.2 GHz for IEEE 802.11n standard. Proposed dual-band Wilkinson power divider is used in parallel stub line. The design is accomplished by transforming the electrical length and impedance of the quarter wave sections of the conventional Wilkinson power divider into dual band ${\pi}$-shaped sections.

An ultra-compact Wilkinson power divider MMIC with an improved isolation characteristic employing RCR design method (RCR 삽입법에 의해 설계된 높은 절연특성을 가지는 초소형 MMIC용 윌킨슨 전력분배기)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.105-113
    • /
    • 2013
  • In this work, using a ${\pi}$-type multiple coupled microstrip line structure (MCMLS) and RCR (Resistor Capacitor Resistor) structure, we fabricated ultra-compact and high isolation Wilkinson power divider on GaAs MMIC (Monolithic Microwave Integrated Circuit). The line length of the Wilkinson power divider was reduced to about ${\lambda}$/46, and its size was 0.304 [$mm^2$], which is 12.1 % of conventional one. Compared with conventional Wilkinson power divider, isolation characteristic of the proposed Wilkinson power divider was highly improved by using RCR insertion method. The proposed Wilkinson power divider showed good RF performances in C/X band.

An Analysis of the Unequal Wilkinson Power Divider Using the Finite-Difference Time-Domain (FDTD) Method (시간 영역 유한 차분법(FDTD)을 이용한 비등분 Wilkinson 전력 분배기의 해석)

  • 김광조;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.715-724
    • /
    • 1998
  • The FDTD(Finite-Difference Time-Domain) method is applied to analyze an unequal Wilkinson power divider. Unequal Wilkinson power divider has complex structures and the standard Yee Cell modeling method is not appropriate. In this paper, nonuniform gridding and subcell modeling are used to accurately analyze the characteristics of an unequal Wilkinson power divider. For comparison, the numerical results are presented with those from a commercial circuit simulator.

  • PDF

Modified Wilkinson Power Divider for Multiple Harmonics Suppression

  • Kang In-Ho;Xu Hai-Yan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.615-618
    • /
    • 2005
  • A new structure of the Wilkinson power divider that can suppress multiple harmonics output is presented The power divider consists of T-type or $\pi$-type capacitive loads and shunt resistors. Experimental results show that this power divider suppresses the second and the third harmonic components to less than -38dB, while maintaining the characteristics of a conventional Wilkinson power divider, featuring an equal power split, a simultaneous impedance matching at all ports and a good isolation between output ports.

Modified Wilkinson Power Divider for Harmonic 제거 (9개의 하모닉을 억제하는 월킨슨 전력 분배기)

  • Kang, In-Ho;Kim, Jung-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.273-277
    • /
    • 2003
  • This paper presents a structure of the Wilkinson power divider that can suppress the 9ea harmonic output. The power divider consists of ${\lambda}/4n$ open stubs, which are located at the $3{\lambda}/4$ branches and parallel connection of resistor which shunts the output ports. Experimental results show that this power divider suppresses from 1st to 9th harmonic components to less than -37dB, while maintaining the characteristics of a conventional Wilkinson power divider; featuring an equal power split, a simultaneous impedance matching at all ports and a good isolation between output ports. these results agree quite well with the simulation results.

  • PDF

Modified Wilkinson Power Divider Using Transmission Lines for Various Terminated Impedances and an Arbitrary Power Ratio

  • Yoon, Young-Chul;Kim, Young
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • This paper introduces a modified Wilkinson power divider that uses uniform transmission lines for various terminated impedances and an arbitrary power ratio. For the designed power ratio, the proposed divider changes only the electrical lengths of the transmission lines between the input and output ports, and those between the output ports and the isolation resistor. In this case, even when various termination impedances of the ports exist, the divider characteristics are satisfied. To verify the feasibility of the proposed divider, two circuits were designed to operate at a frequency of 2 GHz with 2:1 and 4:1 power splitting ratios and various terminated impedances of 40, 70, and $60{\Omega}$ for one circuit, and 50, 70, and $60{\Omega}$ for the other. The measurement and simulation results were in good agreement.

Modified Wilkinson Power Divider for nth Harmonic Suppression (고조파 제거 기능을 갖는 윌킨슨 전력분배기의 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • A modified design that can reject the nth harmonic components in the Wilkinson power divider is presented. After adding transmission lines of electrical lengths determined by suppression terms between two transformers of the traditional design, a solution of the modified Wilkinson divider can be found. Experimental results show the second and third harmonic suppression to be -45.3 dB and -46.4 dB, respectively, while maintaining the conventional performance at the fundamental frequency.

Fabrication of Six-port Phase Correlator using Multi-section Power Divider and Coupler (다중결합 Power divider 와 Coupler를 이용한 Six-port 위상 상관기 제작)

  • Yu, Jae-Du;Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • The general six-port phase correlator is comprised of a Wilkinson power divider and three $90^{\circ}$ hybrid coupler, which has less than 10 % bandwidth. In this paper, the six-port phase correlator using two section power divider has 33 % bandwidth and external matching $90^{\circ}$ hybrid coupler with 15 % bandwidth was designed at the center frequency of 2.5 GHz. The simulation result by ADS2003A indicates that RF port and LO port of proposed six-port phase correlator got wide frequency bandwidth of 14 % for VSWR of 1.5. The fabricated six-port phase correlator has a bandwidth of 12 % similar to the simulation result. The maximum phase discrepancy and insertion loss are $6^{\circ}$ and 2.5 dB over a bandwidth, respectively.

Compact Wilkinson Power Divider Design and Fabrication Using IPD Technology

  • Li, De-Zhong;Wang, Cong;Kyung, Gear Inpyo;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.406-407
    • /
    • 2009
  • In this paper, presents the Wilkinson power divider used integrated passive device (IPD) technology with excellent performance for personal communication services (PCS). The insertion loss of this power divider is 0.4 dB and the port isolation greater than 25 dB over the entire band. Return losses input and output ports are 18 dB and 19 dB, respectively. The power divider based on SI-GaAs substrate is designed within die size of about $0.775\times0.53\;mm^2$.

  • PDF