• Title/Summary/Keyword: Wildfire Detection

검색결과 18건 처리시간 0.028초

Detection of Wildfire-Damaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea

  • Lee, Soo-Jin;Lee, Yang-Won
    • 대한원격탐사학회지
    • /
    • 제36권1호
    • /
    • pp.29-39
    • /
    • 2020
  • Forest fire is a critical disaster that causes massive destruction of forest ecosystem and economic loss. Hence, accurate estimation of the burned area is important for evaluation of the degree of damage and for preparing baseline data for recovery. Since most of the area size damaged by wildfires in Korea is less than 1 ha, it is necessary to use satellite or drone images with a resolution of less than 10m for detecting the damage area. This paper aims to detect wildfire-damaged area from a Kompsat-3 image using the indices such as NDVI (normalized difference vegetation index) and FBI (fire burn index) and to examine the classification characteristics according to the methods such as Otsu thresholding and ISODATA(iterative self-organizing data analysis technique). To mitigate the salt-and-pepper phenomenon of the pixel-based classification, a gaussian filter was applied to the images of NDVI and FBI. Otsu thresholding and ISODATA could distinguish the burned forest from normal forest appropriately, and the salt-and-pepper phenomenon at the boundaries of burned forest was reduced by the gaussian filter. The result from ISODATA with gaussian filter using NDVI was closest to the official record of damage area (56.9 ha) published by the Korea Forest Service. Unlike Otsu thresholding for binary classification,since the ISODATA categorizes the images into multiple classes such as(1)severely burned area, (2) moderately burned area, (3) mixture of burned and unburned areas, and (4) unburned area, the characteristics of the boundaries consisting of burned and normal forests can be better expressed. It is expected that our approach can be utilized for the high-resolution images obtained from other satellites and drones.

딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지 (Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images)

  • 서영민;윤유정;김서연;강종구;정예민;최소연;임윤교;이양원
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1413-1425
    • /
    • 2023
  • 기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.

YOLOv5를 이용한 객체 이중 탐지 방법 (Object Double Detection Method using YOLOv5)

  • 도건우;김민영;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.54-57
    • /
    • 2022
  • 대한민국은 산불의 위험으로부터 취약한 환경을 가지고 있으며, 이로 인해 매년 큰 피해가 발생하고 있다. 이를 예방하기 위해 많은 인력을 활용하고 있으나 효과가 미흡한 실정이다. 만약 인공지능 기술을 통해 산불을 조기 발견해 진화된다면 재산 및 인명피해를 막을 수 있다. 본 논문에서는 산불의 피해를 최소화하기 위한 오브젝트 디텍션 모델을 제작하는 과정에서 발생하는 데이터 수집과 가공 과정을 최소화하는 목표로 한 객체 이중 탐지 방법을 연구했다. YOLOv5에서 한정된 이미지를 학습한 단일 모델을 통해 일차적으로 원본 이미지를 탐지하고, 원본 이미지에서 탐지된 객체를 Crop을 통해 잘라낸다. 이렇게 잘린 이미지를 재탐지하는 객체 이중 탐지 방법을 통해 오 탐지 객체 탐지율의 개선 가능성을 확인했다.

  • PDF

GEMS 영상과 기계학습을 이용한 산불 연기 탐지 (Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning)

  • 정예민;김서연;김승연;유정아;이동원;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.967-977
    • /
    • 2022
  • 산불의 발생과 강도는 기후 변화로 인하여 증가하고 있다. 산불 연기에 의한 배출가스 대기질과 온실 효과에 영향을 미치는 주요 원인 중 하나로 인식되고 있다. 산불 연기의 효과적인 탐지를 위해서는 위성 산출물과 기계학습의 활용이 필수적이다. 현재까지 산불 연기 탐지에 대한 연구는 구름 식별의 어려움 및 모호한 경계 기준 등으로 인한 어려움이 존재하였다. 본 연구는 우리나라 환경위성 센서인 Geostationary Environment Monitoring Spectrometer (GEMS)의 Level 1, Level 2 자료와 기계학습을 이용한 산불 연기 탐지를 목적으로 한다. 2022년 3월 강원도 산불을 사례로 선정하여 산불 연기 레이블 영상을 생성하고, 랜덤 포레스트 모델에 GEMS Level 1 및 Level 2 자료를 투입하여 연기 픽셀 분류 모델링을 수행하였다. 훈련된 모델에서 입력변수의 중요도는 Aerosol Optical Depth (AOD), 380 nm 및 340 nm의 복사휘도 차, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), 포름알데히드, 이산화질소, 380 nm 복사휘도, 340 nm 복사휘도의 순서로 나타났다. 또한 2,704개 픽셀에 대한 산불 연기 확률(0≤p≤1) 추정에서 Mean Bias Error (MBE)는 -0.002, Mean Absolute Error (MAE)는 0.026, Root Mean Square Error (RMSE)는 0.087, Correlation Coefficient (CC)는 0.981의 정확도를 보였다.

콩에 발생하는 주요 병원세균의 동시검출을 위한 다중 PCR 방법 (Multiplex PCR Assay for the Simultaneous Detection of Major Pathogenic Bacteria in Soybean)

  • 이영훈;김남구;윤영남;임승택;김현태;윤홍태;백인열;이영기
    • 한국작물학회지
    • /
    • 제58권2호
    • /
    • pp.142-148
    • /
    • 2013
  • 국내 콩에서 발생하는 세균병해인 불마름병, 들불병, 세균점무늬병, 세균갈색점무늬병의 다중 진단을 위한 PCR 방법을 요약하면 다음과 같다. 1. 콩에 발생하는 각각의 세균들은 서로 다른 박테리오신(bacteriocin) 이나 파이토톡신(phytotoxin)을 생산하는데 이와 관련한 유전자를 목적으로 하여 진단프라이머를 설계하였다. 2. 불마름병은 glycinecin A, 들불병은 tabtoxin, 세균점무늬병은 coronatine과 세균갈색점무늬병은 syringopeptin을 목적유전자로 하여 다중 진단프라이머 조합을 설계하였다. 3. 1차 선발로 각각의 균주에 대한 단일 진단 프라이머를 선발하였으며, 여기선 선발된 21개의 프라이머들을 조합하여 4종 다중진단프라이머 선발을 위한 2차 선발에 이용하였다. 최종적으로 280 bp의 불마름병, 355 bp의 세균갈색점무늬병, 563 bp의 들불병과 815 bp의 세균점무늬병으로 구성된 다중진단 프라이머 조합이 개발되었다. 4. 선발된 4종 다중 진단 프라이머 조합의 경우 다른 세균들과의 비특이적 반응이 있는지 확인하기 위한 3차 선발을 거쳐 그 특이성을 검증하였다.

영상정보를 이용한 산불 감지 알고리즘 (A Forest Fire Detection Algorithm Using Image Information)

  • 서민석;이충호
    • 융합신호처리학회논문지
    • /
    • 제20권3호
    • /
    • pp.159-164
    • /
    • 2019
  • 영상정보에서 색상만을 이용하여 산불을 감지하는 것은 매우 어려운 이슈이다. 본 논문은 산불을 포함하고 있는 동영상에서 영역의 색상과 움직임을 분석하여 산불영역을 감지하는 알고리즘을 제안한다. 제안하는 알고리즘에서는 조명 상태에 의존하지 않고 배경 영역을 추출 가능한 가우시안 믹스쳐 기반의 배경 분할 알고리즘을 이용하여 제거한다. 또한 RGB채널을 HSV채널로 변경하여 색상 기반으로 화염 후보들을 추출한다. 그렇게 추출된 화염후보들은 라벨링 및 트래킹을 하면서 면적이 일정하면서 이동하면 화염이 아니라고 판단한다. 이런 방법으로 추출된 화염후보 영역들이 2분 이상 같은 위치에 있으면 화염으로 판단한다. 구현된 알고리즘을 이용하여 실험한 결과 그 유효성을 확인하였다.

위성기반 산불피해지수를 이용한 북한지역 산불피해지 분석 (Analysis of Burned Areas in North Korea Using Satellite-based Wildfire Damage Indices)

  • 김서연;윤유정;정예민;권춘근;서경원;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_3호
    • /
    • pp.1861-1869
    • /
    • 2022
  • 최근 기후변화에 따라 세계적으로 산불이 빈번해지고 피해 규모가 커지면서, 이에 따른 산림 생태계 파괴, 인명 및 재산 피해가 증가하고 있다. 위성기반 산불피해지수는 객관적이고 신속한 산불피해지 파악을 가능하게 하고, 북한과 같이 접근이 불가능한 지역에 대한 분석에 유용하다. 이 단보에서는 전통적으로 사용되어 온 Normalized Burn Ratio (NBR)를 비롯하여, 식생활력도를 나타내는 Normalized Difference Vegetation Index (NDVI), 그리고 최근에 개발된 Fire Burn Index (FBI)와 Forest Withering Index (FWI)를 이용하여 북한지역 산불피해지 탐지를 수행하고, 4가지 지수의 비교 평가를 통해 한반도 적용 방안을 모색하였다. 향후 중소형 산불에 대한 적용가능성 검토와 딥러닝 영상인식의 활용 등이 추가적으로 연구되어야 할 것이다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.