• 제목/요약/키워드: Wii balance board (WBB)

검색결과 11건 처리시간 0.023초

Wii Balance Board를 이용한 Sit-to-Stand와 보행시 지면반발력의 타당도 분석 (Validity of Ground Reaction Forces during Gait and Sit-to-Stand using the Nintendo Wii Balance Board in Healthy Subjects)

  • 정유진;박대성
    • 대한물리의학회지
    • /
    • 제11권4호
    • /
    • pp.85-92
    • /
    • 2016
  • PURPOSE: A good, valid, and feasible tool for evaluating sit to stand (STS) is needed to help clinicians quantify the STS ability of stroke patients and people with balance disorders. The purpose of this study was to evaluate the concurrent validity of the Nintendo Wii Balance Board (WBB) and a force plate during STS and gait. METHODS: Seventeen healthy adults performed five trials of STS and gait on the WBB placed on the force plate. The force plate and the WBB were compared in regard to center of pressure (COP) and ground reaction force (GRF) data that were collected simultaneously. The variables used for analysis were time (s), integral summation (%), COP path length (mm), COP x range, and COP y range, all of which were measured for both tasks. Counter (%), peak (%), and rebound (%) were analyzed for STS, and $1^{st}$ peak (%), min peak (%), and 2nd peak (%) were analyzed for gait. The concurrent validity was analyzed using an intraclass correlation coefficient (ICC) and a standard error of measurement (SEM) with a 95% confidence interval. RESULTS: The concurrent validity of the WBB for STS ranged from fair to good (ICC=.701~.994, SEM=.029~3.815). The concurrent validity for gait was good (ICC=.869 ~.989, SEM=.007~2.052) aside from path length and x and y ranges of COP (ICC=-.150~.371, SEM=3.635~4.142). CONCLUSION: The GRF of the WBB has a good validity for STS and gait analysis. The WBB is remarkably portable, easy to use, and convenient for clinically assessing STS and gait.

Wii Balance Board를 이용한 Sit-to-Stand와 보행기능 측정의 검사-재검사 신뢰도 (Test-retest Reliability of Sit-to-Stand and Gait Assessment Using the Wii Balance Board)

  • 양승례;오유리;전예림;박대성
    • 한국전문물리치료학회지
    • /
    • 제23권3호
    • /
    • pp.40-47
    • /
    • 2016
  • Background: Assessments of Sit-to-Stand (STS) and gait functions are essential procedures in evaluating level of independence for the patients after stroke. In a previous study, we developed the software to analyze center of pressure (COP) in standing position on Wii Balance Board (WBB). Objects: This purpose of this study is to measure test-retest reliability of ground reaction forces, COP and time using WBB on STS and gait in healthy adults. Methods: Fifteen healthy participants performed three trials of STS and gait on WBB. The time (s), vertical peak (%) and COP path-length (cm) were measured on both tasks. Additionally, counter (%), different peak (%), symmetry ratio, COP x-range and COP y-range were analyzed on STS, 1st peak (%), 2nd peak (%) of weight were analyzed on gait. Intra-class correlation coefficient (ICC), standard error measurement (SEM) and smallest real difference (SRD) were analyzed for test-retest reliability. Results: ICC of all variables except COP path-length appeared to .676~.946 on STS, and to .723~.901 on gait. SEM and SRD of all variables excepting COP path-length appeared .227~8.886, .033~24.575 on STS. SEM and SRD excepting COP path-length appeared about .019~3.933, .054~11.879 on gait. Conclusion: WBB is not only cheaper than force plate, but also easier to use clinically. WBB is considered as an adequate equipment for measuring changes of weight bearing during balance, STS and gait test which are normally used for functional assessment in patients with neurological problems and elderly. The further study is needed concurrent validity on neurological patients, elderly patients using force plate and WBB.

Balance Evaluation after Reconstruction of Medial Patellar Luxation in Small-Sized Dogs with Wii Balance Board

  • Lee, Shinho;Lee, Joo-Myoung;Park, Hyunjung;Cha, Yuri;Cheong, Jongtae
    • 한국임상수의학회지
    • /
    • 제36권6호
    • /
    • pp.301-305
    • /
    • 2019
  • Wii® balance board (WBB, Nintendo, Japan) is a device that can measure and record the center of pressure path length (CPPL) and 95% confidence ellipse area (Area 95) in relation to body sway. For evaluating measure of improvement after reconstruction of medial patellar luxation (MPL) in small sized dogs, A total of 6 dogs with limping and lameness gait attributed to Grade II, III or IV MPL were evaluated. Dogs were measured for difference of extension and flexion range of motion in the stifle (dROM), muscle mass, lameness, willingness to bear weight on the affected limb while standing, and willingness to lift the contralateral limb scores, CPPL and Area 95 of WBB on pre-surgery, post-surgery 4, 8 weeks. CPPL was significantly different on pre-surgery compared with post-surgery 8 weeks (p < 0.05). Except for CPPL, measured variables were significantly different on pre-surgery compared with post-surgery 4 and post-surgery 8 weeks (p < 0.01).

닌텐도 위를 활용한 흉부 흔들림의 자세 안정성 측정 (Trunk Stabilization Measurements Using the Nintendo Wii)

  • 양주영;유재하;김동연;박준모;김수찬
    • 전자공학회논문지
    • /
    • 제51권7호
    • /
    • pp.239-247
    • /
    • 2014
  • 병원이나 검사실 등에 널리 이용되는 평형 기능 검사법은 고감도 압력센서를 이용한 균형감각조절임상검사(CTSIB, clinical test of sensory integration on balance)이다. 바로 선 자세에서 발바닥의 압력중심(center of pressure)의 변화를 관찰함으로써 흉부 흔들림을 객관적으로 측정한다. 본 논문에서는 가정에서도 손쉽게 흉부의 흔들림을 측정할 수 있는 방법을 제안하고자 한다. 위 밸런스보드(Wii balance board, WBB)는 게임기임에도 불구하고 흉부 흔들림과 상관관계가 높은 압력중심을 측정할 수 있기 때문에 기존의 임상용 제품과 유사한 결과를 보인다. 하지만 위 리모트 컨트롤러(Wii remote controller, WRC)는 WBB보다 저렴하고 손쉽게 구할 수 있음에도 불구하고 흉부 흔들림 분석에서는 압력 측정 방식이 아니기 때문에 기대만큼 활용되지 못하고 있다. 본 연구에서는 정상인 10명(남자:5명, 여자:5명)을 대상으로 WRC의 가속도 정보로부터 convex hull 혹은 ellipse area 분석법을 이용하여 WBB와 유사한 결과를 보였다.

Validity of the Wii Balance Board for Evaluation of Medial Patellar Luxation in Small Sized Dog

  • Lee, Shinho;Lee, Joo-Myoung;Park, Hyunjung;Cha, Yuri;Cheong, Jongtae
    • 한국임상수의학회지
    • /
    • 제36권6호
    • /
    • pp.297-300
    • /
    • 2019
  • Wii® balance board (WBB) is a device that can measure and record body sway. This study was conducted to evaluate the reliability of WBB in small sized dog as inexpensive, portable and convenient tool. The center of pressure path length (CPPL) and 95% confidence ellipse area (Area 95) were evaluated with only two plates of WBB. The parameters were evaluated between no load (0 kg) and mass group (0.25-4 kg on each one plate). 23 dogs (2.3-7.3 kg) were evaluated for with hindlimb standing for 10 seconds. The mass group showed a significant value in comparison to the no load during the measurement. And intra-class correlation coefficients (ICCs) between CPPL and Area 95 revealed very high both mass and dog group. In the evaluation of medial patellar luxation (MPL) as a diagnostic tool, 80 dogs with MPL and 23 non-affected dogs were used. In studies of CPPL and Area 95, significant differences were found between non-affected and MPL groups for 10 and 30 seconds, respectively. The WBB can be used as a valid tool for evaluating hind limb standing balance and can be useful as an objective tool to present clinical results in small sized dog with MPL.

Development of Squat Posture Guidance System Using Kinect and Wii Balance Board

  • Oh, SeungJun;Kim, Dong Keun
    • Journal of information and communication convergence engineering
    • /
    • 제17권1호
    • /
    • pp.74-83
    • /
    • 2019
  • This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.

Comparison of Vertical Ground Reaction Forces during Jump between Elderly and Young Adults using Nintendo Wii Balance Board

  • Lim, Jiyoung;Yu, Deokhyeon;Kim, Chaeyoung;Park, Daesung
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권2호
    • /
    • pp.161-166
    • /
    • 2021
  • Objective: The purpose of this study was to quantitatively evaluate the Wii Balance Board (WBB)-based jump performance for the elderly and to confirm the difference in jump performance according to age. Design: Cross-sectional study. Methods: 40 young adults (aged 22.5±2.2 years) and 33 elderly (aged 75.1±5.2 years) without orthopedics disease participated in this study. Standing on the WBB then, with the signal "start," jump vertically to the maximum height at which you can jump, land on the force plate after jump and keep it standing on both feet. All subjects were required to practice the jump sufficiently before starting the measurement, each measuring three times, and the mean values were used. A one-minute break was provided between each trial. Evaluators waited within 1meter for every test to prepare for fall. Results: The vertical ground reaction force of elderly and young adults when jumping using WBB showed a significant difference (p<0.05) and demonstrated discriminant validity. Between two groups, there were significant differences in overall jump time (p<0.05), maximum value (p<0.05), minimum value (p<0.05), center of pressure (COP) pathlength (p<0.05), and flight time p<0.05). Conclusions: This study found that performing the vertical jump, the elderly showed longer jump time, lower vertical ground reaction force, COP pathlength and shorter flight phase than healthy young adults using WBB and demonstrated that as a measurement tool, WBB discriminated vertical jump performance between elderly and young adults.

Comparison of vertical ground reaction forces between female elderly and young adults during sit-to-stand and gait using the Nintendo Wii Balance Board

  • Lim, Ji Young;Yi, Yoonsil;Jung, Sang Woo;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • 제7권4호
    • /
    • pp.179-185
    • /
    • 2018
  • Objective: The purpose of this study was to analyze and compare vertical ground reaction forces during sit to stand (STS) and gait between female elderly and young individuals using the Wii Balance Board (WBB). Design: Cross-sectional study. Methods: Fifty-one female elderly people (age: $75.18{\pm}4.60years$), and 13 young people (age: $29.85{\pm}3.69years$) performed the five times STS test and gait respectively on the WBB. We analyzed time (s), vertical peak (%), integral summation (Int_SUM, %), and counter variables (%) in STS and 1st peak (body weight, BW%), 2nd peak (BW%), peak minimum (BW%), time (second), center of pressure (COP) path length (mm), and Int_SUM (BW%) in gait. The independent t-test was used to assess for differences in STS, gait ability, and general characteristics between the female elderly group and young adults group. With the first and last trials excluded, the mean value was obtained from the middle three of the five trials. Results: During STS, Int_SUM and time of young adults were significantly less than of the female elderly subjects. There were no significant differences in peak and counter variables. In gait, all variables (1st peak, 2nd peak, min, time, COP_path, and Int_SUM) showed significant differences between groups (p<0.05). This study demonstrated that the validity of vertical ground reaction forces occurring during STS and gait was significant in female elderly and young adults. Conclusions: Based on the measurement of vertical ground reaction forces in STS and gait using the WBB, it is possible to clinically improve the quality of geriatric physical therapy. Further studies are necessary to examine concurrent validity of elderly patients who have undergone total hip or knee replacement.

Effects of real-time feedback training on weight shifting during golf swinging on golf performance in amateur golfers

  • Hwang, Ji-Hyun;Choi, Ho-Suk;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • 제6권4호
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effects of real-time visual feedback weight shift training during golf swinging on golf performance. Design: Repeated-measures crossover design. Methods: Twenty-sixth amateur golfers were enrolled and randomly divided into two groups: The golf swing training with real-time feedback on weight shift (experimental group) swing training on the Wii balance board (WBB) by viewing the center of pressure (COP) trajectory on the WBB. All participants were assigned to the experimental group and the control group. The general golf swing training group (control group) performed on the ground. The golf performance was measured using a high-speed 3-dimensional camera sensor which analyses the shot distance, ball velocity, vertical launch angle, horizontal launch angle, back spin velocity and side spin velocity. The COP trajectory was assessed during 10 practice sessions and the mean was used. The golf performance measurement was repeated three times and its mean value was used. The assessment and training were performed at 24-hour intervals. Results: After training sessions, the change in shot distance, ball velocity, and horizontal launch angle pre- and post-training were significantly different when using the driver and iron clubs in the experimental group (p<0.05). The interaction time${\times}$group and time${\times}$club were not significant for all variables. Conclusions: In this study, real-time feedback training using real-time feedback on weight shifting improves golf shot distance and accuracy, which will be effective in increasing golf performance. In addition, it can be used as an index for golf player ability.

앉은 자세에서 방석센서를 이용한 요통환자 골반가동성 측정의 신뢰도와 타당도 (Reliability and Validity of the Measurement of Pelvic Movement in Low Back Pain Patients using Cushion Sensor in Sitting Position)

  • 정승화;박대성
    • 대한물리의학회지
    • /
    • 제15권2호
    • /
    • pp.83-91
    • /
    • 2020
  • PURPOSE: Postural and structural asymmetry due to muscle imbalances around the lower back and pelvis are the causes of back pain. Muscle imbalances in patients with chronic low back pain affect the pelvic tilt and movement, and it is necessary to assess the pelvic movement ability using the appropriate tools to determine the mediating effects of lower back pain. This paper reports the reliability and validity of the Sensbalance Therapy Cushion (STC) for pelvic movement and proprioception. METHODS: In this study, the Wii balance board (WBB) was used as a golden standard for pelvic movement measurements. FABQ, KODI, Myovision, and Pelvic movement were measured in 50 patients with chronic low back pain. The correlation between the lower-back muscle activity and pelvic movement was checked. The pelvic movement parameter was measured twice to determine the intra-rater reliability. RESULTS: The STC showed high test-retest reliability in the pelvic tilt measurements (ICC = .672 - .809). The test-retest reliability of proprioception measurements (ICC = .588 - .859) and reaction time measurements (ICC = .542 - .836) were also high. The relationship between the WBB and STC showed a significant positive correlation with the pelvic tilt test (p < .01). The posterior pelvic tilt and lower-back muscle activity showed a significant negative correlation (p < .01). The pelvic left tilt and lower-back muscle activity showed a significant negative correlation (p < .05). CONCLUSION: The results revealed the high reliability and validity of the STC. Therefore, the STC can be used as an objective measuring device for evaluating pelvic tilt, proprioception, and reaction time in low back pain patients.