• Title/Summary/Keyword: Wigner distribution

Search Result 70, Processing Time 0.023 seconds

Frequency Demodulation Techniques for Detecting Gear Movement (기어의 움직임 검출을 위한 주파수 분석법)

  • 채장범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.259-263
    • /
    • 1996
  • In diagnosing of mechanical machinery, it is often improtant to get information about the movement inside the machine casing. If the values of internal tities may be derived from the measurement using sensors installed on the external casing, it would be much better in many senses. This paper discusses extracting internal gear movements byfrequencydemodulation from gear meshing force signatures which can be recovered from the vibrations though inverse filter. There are several way in demodulating signals. In this paper, especially, Hibert Transform, Wigner-Ville distribution, and Teager energy operator are examined and compared. Effects of noise on the frequency demodulation methods and the behavior of bandpass filtered noisy signal are discussed using simulated time-varying frequency signals.

  • PDF

Simulation of Quantum Effects in the Nano-scale Semiconductor Device

  • Jin, Seong-Hoon;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.32-40
    • /
    • 2004
  • An extension of the density-gradient model to include the non-local transport effect is presented. The governing equations can be derived from the first three moments of the Wigner distribution function with some approximations. A new nonlinear discretization scheme is applied to the model to reduce the discretization error. We also developed a new boundary condition for the $Si/SiO_2$ interface that includes the electron wavefunction penetration into the oxide to obtain more accurate C-V characteristics. We report the simulation results of a 25-nm metal-oxide-semiconductor field-effect transistor (MOSFET) device.

The realization for power measurement system to analyze and improve the external distortion with DSP (DSP를 이용한 전력 측정 시스템의 외란 신호 분석 및 개선을 위한 시스템 구현)

  • 김자환;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.233-235
    • /
    • 2003
  • The realization for power measurement system to analyze and improve the external distortion with DSP is presented. The system is composed of RF, DSP and communication module, and take the Wigner distribution algorithm to remove the external distortion. The experiment result has SNR as $\pm$0.5dB to be improved than existing system.

  • PDF

"A study on the Time-Frequency Algorithm to estimate time-varying Power Spectrum of Heart Rate Variability Signals" (심박변동신호의 시변파워스펙트럼 추정을 위한 Time-Frequency 알고리즘에 관한연구)

  • Park, C.S.;Lee, J.W.;Lee, J.Y.;Kim, J.S.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.185-186
    • /
    • 1998
  • The discrete Wigner-distribution(DWD) was implemented for the time-frequency analysis of heart rate variability signals. The smoothed cross-DWD was used to estimate time-varying power spectrum. Spurious cross-terms were suppressed using a smoothing data window and a Gauss frequency window. The DWD is very easy to implement using the FFT algorithm. Experiment show that the DWD follows well the instantaneous changes of spectral content of heart rate variability signals, which characterize the dynamics of autonomic nervous system response.

  • PDF

Comparison of the Wave Propagation Group Velocity in Plate and Shell (평판 및 셸에서의 파동 전파 군속도 비교)

  • Lee, Jeong-Han;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • Precision of theoretical group velocity of waves in shell structures was discussed for the purpose of source localization of loose parts impact in pressure vessels of nuclear power plants. Estimating exact location of loose parts impact inside a reactor or a steam generator is very important in safety management of a NPP. Evaluation of correct propagation velocity of impact signals in pressure vessels, most of which are shell structures, is essential in impact source localization. Theoretical group velocities of impact signals in a plate and a shell were calculated by wave equations and compared to the velocities measured experimentally in a plate specimen and a scale model of a nuclear reactor. The wave equation applicable to source localization algorithm in shell structures was chosen by the study.

Mass estimation using time-frequency analysis (시간-주파수 기법을 이용한 금속파편 질량 추정)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1129-1134
    • /
    • 2006
  • Mass estimation was derived as functions of acceleration magnitude and primary frequency. The conventional method of mass estimation used frequency data directly in the frequency domain. The signals that can be obtained sensor contained noise as well as impact signal. Therefore, how well we can detect the frequency data in noise directly determines the quality of mass estimation. To find exact frequency data, we used time-frequency analysis. The time frequency method are expected to be more useful than the conventional frequency domain analyses for the mass estimation problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the mass estimation in a noisy environment.

  • PDF

Measurement of Spatial Coherence Function of multy-mode beam by using a Sagnac Interferometer

  • Lee, Chang-Hyeok;Gang, Yun-Sik;No, Jae-U
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.187-189
    • /
    • 2008
  • The spatial coherence function of multy-mode beam was measured by using a Sagnac interferometer and self referencing technique. For leaner polarization laser beam passing through a multy-mode fiber, its change value of spatial mode and polarization from stress of faber and input coupling angle. And each spatial mode have each polarizations, when we simulation Wigner distribution function and Spatial Correlation function of spatial multi-mode beam by using Hermit Gaussian modes leaner sum. We measured spatial coherence function of using by multy-mode fiber. One can use this measurement method to study and characterize the property of multy-mode light field coming out of GRIN multy-mode fiber.

  • PDF

Source Localization of an Impact on a Plate using Time-Frequency Analysis (시간 주파수 분석을 이용한 충격발생 위치 추정)

  • Park, Jin-Ho;Choi, Young-Chul;Lee, Jeong-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.107-111
    • /
    • 2005
  • It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses fer the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment.

  • PDF

Loose-part Mass Estimation Using Time-frequency Analysis (시간-주파수 기법을 이용한 금속파편 질량 추정)

  • Park, Jin-Ho;Yoon, Doo-Byung;Park, Keun-Bae;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.872-878
    • /
    • 2006
  • Mass estimation was derived as functions of acceleration magnitude and primary frequency. The conventional method of mass estimation used frequency data directly in the frequency domain. The signals that can be obtained sensor contained noise as well as impact signal. Therefore, how well we can detect the frequency data in noise directly determines the quality of mass estimation. To find exact frequency data, we used time-frequency analysis. The time-frequency methods are expected to be more useful than the conventional frequency domain analyses for the mass estimation problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the mass estimation in a noisy environment.

Network intrusion detection method based on matrix factorization of their time and frequency representations

  • Chountasis, Spiros;Pappas, Dimitrios;Sklavounos, Dimitris
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.152-162
    • /
    • 2021
  • In the last few years, detection has become a powerful methodology for network protection and security. This paper presents a new detection scheme for data recorded over a computer network. This approach is applicable to the broad scientific field of information security, including intrusion detection and prevention. The proposed method employs bidimensional (time-frequency) data representations of the forms of the short-time Fourier transform, as well as the Wigner distribution. Moreover, the method applies matrix factorization using singular value decomposition and principal component analysis of the two-dimensional data representation matrices to detect intrusions. The current scheme was evaluated using numerous tests on network activities, which were recorded and presented in the KDD-NSL and UNSW-NB15 datasets. The efficiency and robustness of the technique have been experimentally proved.