• Title/Summary/Keyword: Wigley Hull

Search Result 47, Processing Time 0.02 seconds

Calculation of Wave-making Resistance using Neumann-Kelvin Theory (Neumann-Kelvin 이론을 사용한 조파저항 계산)

  • S.J. Kim;S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.71-79
    • /
    • 1992
  • In order to obtain the wave-making resistance of a ship, so-called the Neumann-Kelvin problem is solved numerically. For computing the Havelock source, which is the Green's function of the problem, we adopted the methods given by Newman(1987) for the term representing the local disturbance, and Baar and Price(1988) for the wave disturbance, respectively. In the numerical code we developed, the source strength is assumed as bilinear on each panel and continuous throughout the hull surface. The wave-making resistance is calculated using the algorithm of de Sendagorta and erases(1988), which makes use of the wave amplitude far downstream. The Wigley hull was chosen for the sample calculation, and our results showed a good agreement with other existing experimental and numerical results.

  • PDF

The Prediction of Hydrodynamic Forces Acting on Ship Hull Undergoing Lateral Berthing Maneuver Using CFD (CFD을 이용한 선박 접이안시 유체력 추정에 관한 연구)

  • 이윤석;정겸광행;공길영;김순값;이충로
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.132-138
    • /
    • 2003
  • In order to evaluate properly ship motion relating to the berthing maneuver, the hydrodynamic forces acting on ship hull in berthing maneuver need to be estimated rightly. CFD has been employed for time-domain simulation of transient flow induced by Wigley model moving laterally from rest in shallow water. The numerical solutions successfully captured not only the characteristics of the transitional hydrodynamic forces but also some interesting features of the flow field around a berthing ship according to the water depth. In this paper, the consideration is carried out on the approximate formula based on the CFD results, which can estimate hydrodynamic forces especially lateral drag coefficient starting from the rest to the uniform movement.

  • PDF

A Study on Grid Dependencies of the Numerical Solutions for Ship Viscous Flows (배주위 점성유동장에 대한 수치해의 격자의존성에 관한 연구)

  • Kang, K.J.;Lee, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.58-65
    • /
    • 1994
  • It is very important to understand characteristics of solution due to the variation of computational grid sizes, especially when turbulence model not incorporating wall-function is used. The present paper performs numerical investigation on the grid dependency of numerical solution for three dimensional turbulent flow field around a ship. In the present study a finite volume method with a modified sub-grid scale turbulence model and a numerically constructed non-orthogonal curvilinear coordinate system capable of conforming complex ship geometries are used. Numerical studies are then performed for a mathematical Wigley hull and the Series 60, $C_B=0.8$ hull forms. The results for various grid sizes are compared with each other and with measured data to show grid dependencies of numerical solutions.

  • PDF

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

Numerical Calculations of the Wave Resistance of Ships by Neumann-Kelvin Theory (Neumann-Kelvin 이론에 의한 조파 저항의 수치 계산)

  • M.W.,Eo;B.R.,Son;S.H.,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 1987
  • The wave resistance of ships is calculated with the numerical solution of the Newmann-Kelvin problem. For the sake of the numerical evaluation of the Green function, Shen and Farell's method is used[7]. In particular, the contribution of the line integral term in the Neumann-Kelvin problem to the calculated values of the wave resistance is shown. For the Wigley's hull the calculated values of the wave resistance and the wave profiles at the hull surface are in fairly good agreement with the experimental data. However, for the series 60 hull and the practical hull, a 454,000 cubic feet reefer vessel, the calculated results of the wave resistance show definte hollows and humps considering the experimental result.

  • PDF

On the Effects of Incoming Waves on Flow Fields around a Ship (파랑이 선체주위의 유동장에 미치는 영향)

  • Lim Yong-Bum;Lee Seung-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.93-98
    • /
    • 1996
  • Numerical computations are carried out to analyze characteristics of flow fields around an Wigley hull form which is advacing in the incoming waves. Navier-Stokes equations are solved by a finite difference method and a MAC method is used for coupling of pressure and velocity fields, and O-H grid topology is used.

  • PDF

Calculation of Wave Amplitude Functions, Wave Resistance, Wave Elevation Along the Hull, Sinkage and Trim by First-Order Thin-Ship Theory (얇은배 선형이론에 의한 진폭영수 조피저항 선측파고, 침하와 Trim의 계산)

  • Gang, Sin-Hyeong;Lee, Yeong-Gil;Hyeon, Beom-Su
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.153-167
    • /
    • 1982
  • From first-order thin-ship theory, we can obtain the" wave resistance, wave amplitude functions, wave elevation along the hull, sinkage and trim of a ship moving with constant speed into calm water. Generally, these calculations of ship is called with Michell’s Theory, and there is all the difference between calculated wave resistance and residual resistance from conventional wave resis¬tance test. But, these calculated results are important reference materials for initial hull form design procedure. Various calculated results for Shearer’ s Model, Wigley’s Model and Series 60 4210W Model have been calculated using this theory. The results are compared with the corresponding experimental values, and the agreement between theoretical and experimental values is considered satisfactory.

  • PDF

Calculation of the Wave Resistance of SWATH Ships using Rankine Source Panel Methods (Rankine 소오스 패널법을 이용한 소수선면 쌍동선의 조파저항계산)

  • Chun, H.H.;Lee, M.H.;Joo, Y.R.;Jang, H.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.27-38
    • /
    • 1997
  • This paper is concerned with the calculation of the wave resistance for SWATH ships based on a low order Rankine source panel method. Two types of free surface boundary conditions, Dawson type (double model approximation) and Kelvin type (free stream approximation) are used. For the free surface boundary calculation, an analytic differentiation is employed instead of implementing a finite difference scheme. Then, the radiation condition is satisfied by, so called, the panel shift method. The numerical results using the above two methods are compared with those using the thin ship/modified slender body approximation and also with the experimental results. The SWATH models considered are a single strut SWATH and a twin strut SWATH together with the variations of two demihull separation distance. In order to prove the validity of the program developed, the numerical calculations for a Wigley mono hull and Wigley twin hulls are compared with the available experimental results.

  • PDF

A Study on the Design of Ship′s Bow Form using Surface Panel Method (판요소법을 이용한 선수형상 설계에 관한 연구[1])

  • Jae-Hoon Yoo;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.35-47
    • /
    • 1996
  • A surface panel method treating a boundary-value problem of the Dirichlet type is presented to design a three dimensional body with free surface corresponding to a prescribed pressure distribution. An integral equation is derived from Green's theorem, giving a relation between total potential of known strength and the unknown local flux. Upon discretization, a system of linear simultaneous equations is formed including free surface boundary condition and is solved for an assumed geometry. The pseudo local flux, present due to the incorrect positioning of the assumed geometry, plays a role f the geometry corrector, with which the new geometry is computed for the next iteration. Sample designs for submerged spheroids and Wigley hull and carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. For the calculation of the wave resistance, normal dipoles and Rankine sources are distributed on the body surface and Rankine sources on the free surface. The free surface boundary condition is linearized with respect to the oncoming flow. Four-points upwind finite difference scheme is used to compute the free surface boundary condition. A hyperboloidal panel is adopted to represent the hull surface, which can compensate the defects of the low-order panel method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but by experiment.

  • PDF

Computation of Flows Around a High Speed Catamaran

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.465-472
    • /
    • 2001
  • A numerical study is carried out to clarify the characteristics of flow fields and breaking phenomena around a high speed catamaran hull advancing on calm water. Computations are carried out for Froude numbers between 0.2 and 1.0 and for ratios of the distance between hulls to the catamaran length varying between 0.2 and 0.5 for a mathematically defined Wigley hull. A Navier-Stokes solver which includes the nonlinearities of free surface conditions is employed. Computations are performed in a rectangular grid system based on the Marker & Cell method. For validation, present computation results are compared with existing experimental results. As an application, the results of the displacement catamaran are used for the breaking analysis.

  • PDF