• Title/Summary/Keyword: Wiener system

Search Result 113, Processing Time 0.026 seconds

A servo design method for MIMO Wiener systems with nonlinear uncertainty

  • Kim, Sang-Hoon;Kunimatsu, Sadaaki;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1960-1965
    • /
    • 2005
  • This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear part ${\psi}$(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research, we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ${\psi}$(y) into ${\phi}$(y) := ${\psi}$(y)-y and y, and then we reduce this stabilizing problem to a Lur'e problem. As a result, we show that the servo system with no steady state error for step references can be constructed for the Wiener system.

  • PDF

Hammerstein-Wiener Model based Model Predictive Control for Fuel Cell Systems (연료전지 시스템을 위한 헤머스테인-위너 모델기반의 모델예측제어)

  • Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.383-388
    • /
    • 2011
  • In this paper, we consider Hammerstein-Wiener nonlinear model for solid oxide fuel cell (SOFC). A nonlinear model predictive control (MPC) is proposed to trace the constant stack terminal power by Hydrogen flow as control input. After the stability of the closed-loop system with static output feedback controller is analysed by Lyapunov method, a nonlinear model predictive control based on the Hammerstein-Wiener model is developed to control the stack terminal power of the SOFC system. Simulation results verify the effectiveness of the proposed control method based on the Hammerstein-Wiener model for SOFC system.

Wiener-Hopf Equation with Robustness to Application System (응용시스템에 강건한 Wiener-Hopf 방정식)

  • Cho, Ju-Phil;Lee, Il-Kyu;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.245-249
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

Hybrid Fuzzy Adaptive Wiener Filtering with Optimization for Intrusion Detection

  • Sujendran, Revathi;Arunachalam, Malathi
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.502-511
    • /
    • 2015
  • Intrusion detection plays a key role in detecting attacks over networks, and due to the increasing usage of Internet services, several security threats arise. Though an intrusion detection system (IDS) detects attacks efficiently, it also generates a large number of false alerts, which makes it difficult for a system administrator to identify attacks. This paper proposes automatic fuzzy rule generation combined with a Wiener filter to identify attacks. Further, to optimize the results, simplified swarm optimization is used. After training a large dataset, various fuzzy rules are generated automatically for testing, and a Wiener filter is used to filter out attacks that act as noisy data, which improves the accuracy of the detection. By combining automatic fuzzy rule generation with a Wiener filter, an IDS can handle intrusion detection more efficiently. Experimental results, which are based on collected live network data, are discussed and show that the proposed method provides a competitively high detection rate and a reduced false alarm rate in comparison with other existing machine learning techniques.

A Novel Equivalent Wiener-Hopf Equation with TDL coefficient in Lattice Structure

  • Cho, Ju-Phil;Ahn, Bong-Man;Hwang, Jee-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.500-504
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. The new algorithm was applied into the identification of an unknown system for evaluating the performance of the proposed method. We compared the Wiener-Hopf solution with the equivalent Wiener-Hopf solution. The simulation results were similar to those obtained in the theoretical analysis. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

Adaptive Precompensation of Wiener Systems

  • Kang, Hyun-Woo;Bae, Ki-Taek;Cho, Yong-Soo;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.50-59
    • /
    • 1996
  • In this paper, an adaptive precompensator, which can reduce the distortion of a Wiener system effectively, is proposed. The previous techniques for adaptive precompensation, based on the Volterra series modeling to compensate the distortion of a nonlinear system, are not suitable for real-time implementation due to high computational burden and slow convergence burden and slow convergence rate. This paper presents an adaptive precompensation technique for the class of nonlinear subsystem, referred to as Wiener system. An adaptive algorithm for adjusting the parameters of a precompensator, structured by a hammerstein model, is derived using the stochastic gradient method. Also, an adaptive precompensatin technique which can effectively reduce nonlinear distortion in μ-law type of saturation characteristics is proposed. The validity of the proposed algorithm is confirmed through simulation by applying it to known Wiener systmes and a typical loudspeaker model.

  • PDF

Performance of GHICW(Group-wise Hybrid Interference Cancellation Scheme based on Wiener filtering) in Multi Rate DS-CDMA System (하이브리드 위너 필터링 간섭제거 기법을 이용한 다중 데이터 율 DS/CDMA 시스템의 성능 분석)

  • 정재필;최원태;박상규
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.145-148
    • /
    • 2000
  • This paper presents the performance of a GHICW(Group-wise Hybrid Interference Cancellation scheme based on Wiener filtering) receiver for the multi-rate DS-CDMA system. Our scheme has a small processing delay and a simple hardware complexity compared to ordinary interference cancellation schemes by grouping users with the same date rate. The performance improvement of the low rate user is obtained by using a Wiener filter which precisely estimates the high rate users' bit.

  • PDF

Digital Radiography Images Restoration with Wiener Filter in Wavelet Domain (웨이블릿영역에서 위너필터를 이용한 디지털 방사선 영상 복원)

  • Jeong, Jae-Won;Kim, Dong-Youn
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.58-64
    • /
    • 2009
  • Digital radiography (DR) images are corrupted by the additive noise, and also distorted by system impulse response. These unwanted phenomena are obstacles to obtain the desired image. To recover the original image, we applied multiscale Wiener filters in wavelet domain for DR images. The multiscale Wiener filter is first proposed by Chen for the restoration of fractal signals which are distorted by the system impulse response and additive noise. In this paper, we extended the multiscale Wiener filter to the two dimensional data. To compare the performance of ours with others, some simulations are given for a couple of wavelet filters with different wavelet levels, system impulse reponses and various noise power. When the addive noise powers are between 20-32 dB, the signal to noise ratio(SNR) of the proposed system is 0.5-2.0 dB better than that of the traditional Wiener filter method.

Resolution Enhancement of Ultrasonic B-scan Images by Modified Wiener Filter (변형된 Wiener 필터를 이용한 초음파 B스캔영상의 해상력 향상)

  • 정준영;진영민
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.113-120
    • /
    • 1990
  • In this paper, the deconvolution method utilizing a modified Wiener filter is applied for the enhancement of lateral resolution of ultrasonic B-scan Images. For this purpose, a phantom composed of wires which are 0.6mm of diameter and apart in the range between 3 to 9mm is constructed. The modified Wiener filter with optimal parameter is applied to the phantom for the analysis of ultrasonic image. The results obtained are as follows'When all parameters of the modified Wiener filter are optimal, the resolution of B-scan images is enhanced by 50 percent : Othenrise, the images are blurred, spilt at peak points, or noises are strengthened severely. When the point-spread function representing the characteristic function of the system is determined, the selection ranges of op- timum parameters may be narrowed. It is expected that the proposed method may be able to apply to clinic situations for more accurate image analysis by means of reducing the loss of important information.

  • PDF