• Title/Summary/Keyword: Wide speed range

Search Result 613, Processing Time 0.026 seconds

Sensorless Scheme for Interior Permanent Magnet Synchronous Motors with a Wide Speed Control Range

  • Hong, Chan-Hee;Lee, Ju;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2173-2181
    • /
    • 2016
  • Permanent magnet synchronous motors (PMSMs) have higher torque and superior output power per volume than other types of AC motors. They are commonly used for applications that require a large output power and a wide range of speed. For precise control of PMSMs, knowing the accurate position of the rotor is essential, and normally position sensors such as a resolver or an encoder are employed. On the other hand, the position sensors make the driving system expensive and unstable if the attached sensor malfunctions. Therefore, sensorless algorithms are widely researched nowadays, to reduce the cost and cope with sensor failure. This paper proposes a sensorless algorithm that can be applied to a wide range of speed. The proposed method features a robust operation at low-speed as well as high-speed ranges by employing a gain adjustment scheme and intermittent voltage pulse injection method. In the proposed scheme the position estimation gain is tuned by a closed loop manner to have stable operation in tough driving environment. The proposed algorithm is fully verified by various experiments done with a 1 kW outer rotor-type PMSM.

Sensorless Speed Control of Induction Motor in Wide Speed Range (속도검출기가 없는 유도전동기의 광범위 속도 제어)

  • Ryu, Hyung-Min;Ha, Jung-Ik;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2487-2489
    • /
    • 1999
  • This paper proposes a wide speed range sensorless vector control strategy. At low speed region, the difference of high frequency impedances is used in order to estimate the rotor flux angle. At high speed region this algorithm is combined with the adaptive observer. It enables the stable operation even at zero speed under the rated load condition This is verified by experimental results.

  • PDF

Speed Sensorless Vector Control of Induction Motors with an Improved Stator Flux Estimator (개선된 고정자 자속 추정을 통한 유도전동기의 속도센서리스 벡터제어)

  • 신명호;현동석;조순봉;최종률
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.371-375
    • /
    • 1998
  • This paper proposes a programmable low pass filter(LPF) to estimate stator flux for speed sensorless stator flux orientation control of induction motors. The programmable LPF is developed to solve the dc drift problem associated with a pure integrator and an analog LPF with fixed pole. of the programmable LPF is located far from the origin in order to decrease the time constant as speed increases. The programmable LPF has the phase and the magnitude compensator to exactly estimate stator flux in a wide speed range. So, the drift problem is much improved and the stator flux is exactly estimated in the wide speed range. The validity of the proposed programmable LPF is verified by speed sensorless vector control of a 2.2[kW] three-phase induction motor.

  • PDF

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

SPEED SENSORLESS FIELD-ORINTED CONTROL OF INDUCTION MOTORS WITH AN IMPROVED FLUX ESTMATOR

  • Shin, Myoung-Ho;Hyun, Dong-Seok;Cho, Soon-Bong;Choe, Song-Yul
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.392-397
    • /
    • 1998
  • This paper proposes a programmable low pass filter(LPF) to estimate stator flux for speed sensorless stator flux orientation control of induction motors. The programmable LPF is developed to solve the dc drift problem associated with a pure integrator and a LPF with fixed pole. The pole of the programmable LPF is located far from the origin to decrease the time constant as speed increases. The programmable LPF has the phase and the magnitude compensator to exactly estimate stator flux in a wide speed range. So, the drift problem is much improved and the stator flux is exactly estimated in the wide speed range.

  • PDF

Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Flux Observer (반복 적응자속관측기를 이용한 초고속 영구자석형 동기전동기의 전영역 센서리스 제어)

  • Kim, Jong-Moo;Choi, Jeong-Won;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.168-175
    • /
    • 2009
  • This paper proposes an enhanced algorithm for sensorless control of 45,000rpm/22kw type Permanent Magnetic Synchronous Motor (PMSM) with air-foil bearing. The proposed algorithm is based on iterative adaptive flux observer for sensorless control of the motor in wide speed range by on-line estimating angle and velocity of rotor. Simulation error between actual and estimated angle of rotor is analyzed to enhance characteristics of frequency response of conventional adaptive flux observer, which results in stable response in wide range of speed. Using the iteration number for stable phase-delay characteristics, the observer enhances the dynamic characteristics of the observer within current control period. The experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

A Speed Control of Sensorless Induction Motor using Direct Torque Control (직접 토오크 제어를 이용한 센스리스 유도전동기의 속도제어)

  • 박건우;고태언;하홍곤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). The drive is based on Mode1 Reference Adaptive System (MRAS) using state observer as a reference model fat flux estimation. The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAS) with rotor flux linkages for the speed turning aignal at low speed range, two hysteresis controllers. The Proposed system is verified through simulation.

  • PDF

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

Efficiency Optimization Control of IPMSM Drive using SPI Controller (SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

Field Oriented Control of an Induction Motor in a Wide Speed Operating Region (벡터제어(制御) 유도전동기(誘導電動機)의 광역운전(廣域運轉))

  • Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.79-85
    • /
    • 1997
  • This paper describes a control for the high performance induction motor drive system with a wide speed operating range and proposes a robust control method independent of motor parameter variation. For the operation below the rated speed, the high performance control is achieved by using the indirect field-oriented control with a speed sensor. In the high speed regain, the field weakening region with a large variation in motor parameters, the motor drive system can obtain the robustness to motor parameter variation by switchover to the direct field-oriented control. Also, the sensorless speed control using estimated speed is achieved in very high speed region that the utilization of speed sensor pulses is limited. And from experiments using high performance 32bit DSP for 2.2[kW] and 22[kW] laboratory induction motor drive systems, it is verified that the proposed opration algorithm provided a good performance.

  • PDF