• Title/Summary/Keyword: Wide range of surround luminance

Search Result 2, Processing Time 0.019 seconds

Perceived Image Contrast under a Wide Range of Surround Luminance

  • Baek, Ye-Seul;Kim, A-Ri;Kim, Youn-Jin;Kim, Hong-Suk;Park, Seung-Ok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1160-1163
    • /
    • 2009
  • Many researches showed that perceived image contrast increases as the relative surround luminance increases. However, most experiments were conducted under limited surround conditions. In this research, a psychophysical experiment was conducted to investigate the change in perceived image contrast under wide range of surround luminance up to 1820 cd/$m^2$. A large area illuminator was used as a backlight. It consists of 23 dimmable fluorescent lamps and a sheet of diffuser. The luminance could be adjusted to 7 different surround ratios: 0, 0.3, 0.56, 0.96, 2.24, 5.81, and 9.99. Results showed that perceived image contrast changes as a typical band-pass shape and the maximum contrast is found near $S_R$=1.

  • PDF

Determination of the Perceived Contrast Compensation Ratio for a Wide Range of Surround Luminance

  • Baek, Ye Seul;Kim, Hong-Suk;Park, Seung-Ok
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.89-94
    • /
    • 2014
  • It is established that the perceived image contrast is affected by surround luminance. In order to get the same perceived image contrast, the optimum surround compensation ratios for those surround conditions is needed. Much research has been performed for dark, dim, and average surrounds. In this study, a wide range of surround luminance from dark up to $2087cd/m^2$ was considered. Using magnitude estimation method, the change in perceived brightness of six test stimuli was measured under seven surround conditions; dark, dim, 2 levels of average, bright, and 2 levels of over-bright surrounds. To drive the perceived image contrast from the perceived brightness, two different definitions of contrast were tested. Their calculated results were compared with the visual data of our previous work. And to conclude, the perceived contrast compensation ratios were 1:1.11:1.2 for average, dim and dark surrounds. These were close to CIECAM02 model (1:1.17:1.31). Besides, for average, bright, over-bright1 and over-bright2 surrounds the ratios 1:1.17:1.42:1.69 were determined. For intermediate or more extreme surround conditions, the compensation ratio was obtained from the linear interpolation or extrapolation.