• Title/Summary/Keyword: Wide Range Monitoring

Search Result 270, Processing Time 0.022 seconds

A Study on the Detection Model of Illegal Access to Large-scale Service Networks using Netflow (Netflow를 활용한 대규모 서비스망 불법 접속 추적 모델 연구)

  • Lee, Taek-Hyun;Park, WonHyung;Kook, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.11-18
    • /
    • 2021
  • To protect tangible and intangible assets, most of the companies are conducting information protection monitoring by using various security equipment in the IT service network. As the security equipment that needs to be protected increases in the process of upgrading and expanding the service network, it is difficult to monitor the possible exposure to the attack for the entire service network. As a countermeasure to this, various studies have been conducted to detect external attacks and illegal communication of equipment, but studies on effective monitoring of the open service ports and construction of illegal communication monitoring system for large-scale service networks are insufficient. In this study, we propose a framework that can monitor information leakage and illegal communication attempts in a wide range of service networks without large-scale investment by analyzing 'Netflow statistical information' of backbone network equipment, which is the gateway to the entire data flow of the IT service network. By using machine learning algorithms to the Netfllow data, we could obtain the high classification accuracy of 94% in identifying whether the Telnet service port of operating equipment is open or not, and we could track the illegal communication of the damaged equipment by using the illegal communication history of the damaged equipment.

Two-dimensional Spatial Distribution Analysis Using Water Quality Measurement Results at River Junctions (하천 합류부에서의 수질계측결과를 활용한 2차원 공간분포 해석)

  • Lee, Chang Hyun;Park, Jae Gon;Kim, Kyung Dong;Ryu, Si Wan;Kim, Dong Su;Kim, Young Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • High-resolution data are needed to understand water body mixing patterns at river junctions. In particular, in river analysis, hydrological and water quality characteristics are used as basic data for aquatic ecological health, so observation through continuous monitoring is necessary. In addition, since measurement is carried out through a one-dimensional and fixed measurement method in existing monitoring systems, a hydrological and water quality characteristics investigation of an entire river, except for in the immediate vicinity of the measurement point, is not undertaken. In order to obtain high-resolution measurement data, a measurer has to consider multiple factors, and the area or time that can be measured is limited. Although the resolution might be lowered, an appropriate interpolation method must be selected in order to acquire a wide range of data. Therefore, in this study, a high-elevation measurement method at a river junction was introduced, and the interpolation method according to the measurement results was compared. The overall hydraulic and water quality information of the river was indicated through the visualization of the prediction and interpolation method in the low-resolution measurement result. By comparing each interpolation method, Inverse Distance Weighting, Natural Neighbor, and Kriging techniques were applied in river mapping to improve the precision of river mapping through visualized data and quantitative evaluation. It is thought that this study will offer a new method for measuring rivers through spatial interpolation.

Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022 (GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로)

  • Jinyeong Kim;Soyeong Jang;Jaeyeop Kwon;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1651-1669
    • /
    • 2023
  • Sea ice currently covers approximately 7% of the world's ocean area, primarily concentrated in polar and high-altitude regions, subject to seasonal and annual variations. It is very important to analyze the area and type classification of sea ice through time series monitoring because sea ice is formed in various types on a large spatial scale, and oil and gas exploration and other marine activities are rapidly increasing. Currently, research on the type and area of sea ice is being conducted based on high-resolution satellite images and field measurement data, but there is a limit to sea ice monitoring by acquiring field measurement data. High-resolution optical satellite images can visually detect and identify types of sea ice in a wide range and can compensate for gaps in sea ice monitoring using Geostationary Ocean Color Imager-II (GOCI-II), an ocean satellite with short time resolution. This study tried to find out the possibility of utilizing sea ice monitoring by training a rule-based machine learning model based on learning data produced using high-resolution optical satellite images and performing detection on GOCI-II images. Learning materials were extracted from Liaodong Bay in the Bohai Sea from 2021 to 2022, and a Random Forest (RF) model using GOCI-II was constructed to compare qualitative and quantitative with sea ice areas obtained from existing normalized difference snow index (NDSI) based and high-resolution satellite images. Unlike NDSI index-based results, which underestimated the sea ice area, this study detected relatively detailed sea ice areas and confirmed that sea ice can be classified by type, enabling sea ice monitoring. If the accuracy of the detection model is improved through the construction of continuous learning materials and influencing factors on sea ice formation in the future, it is expected that it can be used in the field of sea ice monitoring in high-altitude ocean areas.

Kriging Analysis for Spatio-temporal Variations of Ground Level Ozone Concentration

  • Gorai, Amit Kumar;Jain, Kumar Gourav;Shaw, Neha;Tuluri, Francis;Tchounwou, Paul B.
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2015
  • Exposure of high concentration of ground-level ozone (GLO) can trigger a variety of health problems including chest pain, coughing, throat irritation, asthma, bronchitis and congestion. There are substantial human and animal toxicological data that support health effects associated with exposure to ozone and associations have been observed with a wide range of outcomes in epidemiological studies. The aim of the present study is to estimate the spatial distributions of GLO using geostatistical method (ordinary kriging) for assessing the exposure level of ozone in the eastern part of Texas, U.S.A. GLO data were obtained from 63 U.S. EPA's monitoring stations distributed in the region of study during the period January, 2012 to December, 2012. The descriptive statistics indicate that the spatial monthly mean of daily maximum 8 hour ozone concentrations ranged from 30.33 ppb (in January) to 48.05 (in June). The monthly mean of daily maximum 8 hour ozone concentrations was relatively low during the winter months (December, January, and February) and the higher values observed during the summer months (April, May, and June). The higher level of spatial variations observed in the months of July (Standard Deviation: 10.33) and August (Standard Deviation: 10.02). This indicates the existence of regional variations in climatic conditions in the study area. The range of the semivariogram models varied from 0.372 (in November) to 15.59 (in April). The value of the range represents the spatial patterns of ozone concentrations. Kriging maps revealed that the spatial patterns of ozone concentration were not uniform in each month. This may be due to uneven fluctuation in the local climatic conditions from one region to another. Thus, the formation and dispersion processes of ozone also change unevenly from one region to another. The ozone maps clearly indicate that the concentration values found maximum in the north-east region of the study area in most of the months. Part of the coastal area also showed maximum concentrations during the months of October, November, December, and January.

Analysis on the Advanced Model for Solar Energy Harvesting (개선된 태양 에너지 하베스팅 모델에 대한 분석)

  • Nayantai, Bulganbat;Kong, In-Yeup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • Replacement of sensor nodes for monitoring a wide range area such as mountains and forests needs a lot of time and cost. Using new and renewable energy around them can maximize the lifetime of wireless sensor networks, in which solar energy is infinite energy source that is available in 365 days. To design these sensor networks, solar energy model is essential and to estimate and analyze the overall photovoltaic energy. Using this, we can figure out important data such as the size and performance of solar panel needed. However, existing researches for solar energy harvesting consider parts of many factors to influence the quantity of solar energy gathered. In this paper, we suggest advanced solar energy harvesting model considering angular loss (solar cell panel), overheat loss (solar cell), rechargeable battery heat and cooling for each monthly properties. From our experimental results according to outdoor temperature, panel angle and the surface temperature of solar panel, we show these impact factors are correctly configured.

Claimed Adverse Events of Korean Medicine in South Korea: Analysis of Cases in the Korea Medical Dispute Mediation and Arbitration Agency Databases (한의 의료와 연관된 조정 요청 이상반응: 한국의료분쟁조정중재원 접수사례 분석)

  • Hwang, Hye-Won;Lee, Ji-Sun;Kim, Kun Hyung
    • Korean Journal of Acupuncture
    • /
    • v.34 no.3
    • /
    • pp.126-135
    • /
    • 2017
  • Objectives : The purpose of this study was to describe the type of claimed adverse events related to Korean Medicine practices in South Korea. Methods : Claims with regard to the Korean Medicine practice submitted to the Korea Medical Dispute Mediation and Arbitration Agency from April 2012 to December 2016 were collected. We analyzed claims that explicitly reported the type of Korean medicine intervention and were deemed as being adverse events as defined by the Korea Good Clinical Practice. Claims that did not mention the Korean medicine practice explicitly or those related to the patient's dissatisfaction to the service rather than adverse health outcomes were excluded. Types, related interventions and the suspected severity of claimed adverse events were summarized. Results : Of 197 claims obtained, 140 claim cases were eligible and 144 claimed events were deemed as possible adverse events of the Korean medicine practice. Pain(16%), local infection/inflammation(12%) and neurological symptoms(11%) were the most frequently reported types of claimed adverse events. Thirty-nine claimed serious adverse events(SAE) were identified, including pneumothorax(28.2%) and death(17.9%). Conclusions : A wide range of claimed adverse events were identified. Routine monitoring of claims data may provide undetected safety information with regard to the Korean medicine practice. High risk of misclassification of the intervention and claimed adverse events due to insufficient information is the main caveat of this study.

A Study on the Node Split in Decision Tree with Multivariate Target Variables (다변량 목표변수를 갖는 의사결정나무의 노드분리에 관한 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.386-390
    • /
    • 2003
  • Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields. Classifying a group into subgroups is one of the most important subjects in data mining. Tree-based methods, known as decision trees, provide an efficient way to finding the classification model. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variable should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present some methods for measuring the node impurity, which are applicable to data sets with multivariate target variables. For illustration, a numerical cxample is given with discussion.

An assessment of the taxonomic reliability of DNA barcode sequences in publicly available databases

  • Jin, Soyeong;Kim, Kwang Young;Kim, Min-Seok;Park, Chungoo
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.293-301
    • /
    • 2020
  • The applications of DNA barcoding have a wide range of uses, such as in taxonomic studies to help elucidate cryptic species and phylogenetic relationships and analyzing environmental samples for biodiversity monitoring and conservation assessments of species. After obtaining the DNA barcode sequences, sequence similarity-based homology analysis is commonly used. This means that the obtained barcode sequences are compared to the DNA barcode reference databases. This bioinformatic analysis necessarily implies that the overall quantity and quality of the reference databases must be stringently monitored to not have an adverse impact on the accuracy of species identification. With the development of next-generation sequencing techniques, a noticeably large number of DNA barcode sequences have been produced and are stored in online databases, but their degree of validity, accuracy, and reliability have not been extensively investigated. In this study, we investigated the extent to which the amount and types of erroneous barcode sequences were deposited in publicly accessible databases. Over 4.1 million sequences were investigated in three largescale DNA barcode databases (NCBI GenBank, Barcode of Life Data System [BOLD], and Protist Ribosomal Reference database [PR2]) for four major DNA barcodes (cytochrome c oxidase subunit 1 [COI], internal transcribed spacer [ITS], ribulose bisphosphate carboxylase large chain [rbcL], and 18S ribosomal RNA [18S rRNA]); approximately 2% of erroneous barcode sequences were found and their taxonomic distributions were uneven. Consequently, our present findings provide compelling evidence of data quality problems along with insufficient and unreliable annotation of taxonomic data in DNA barcode databases. Therefore, we suggest that if ambiguous taxa are presented during barcoding analysis, further validation with other DNA barcode loci or morphological characters should be mandated.

Estimation of dryness index based on COMS to monitoring the soil moisture status at the Korean peninsula (한반도 토양수분 상태 모니터링을 위한 천리안 정지궤도 위성 기반 건조 지수 산정)

  • Jeong, Jaehwan;Baik, Jongjin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • Satellite data have attracted attention on research such as natural disaster and climate changes because satellite data is very advantageous for observing a wide range of variability. However, there are still limited spatial and temporal resolutions in satellite data. To overcome these limitations, fusion of various sensors and combination of primary products are used. In this study, surface temperature data of 500 m spatial resolution was produced by fusion of GOCI and MI data of COMS. Also these LST are used with NDVI for estimating TVDI. Soil moisture condition of the Korean peninsula was evaluated by these TVDI and it was compared with SSMI derived from ASCAT surface soil moisture data. As a result, COMS TVDI and ASCAT SSMI showed similar spatial distribution and suggested the possibility of observing the soil moisture using COMS. Therefore, the TVDI estimations can be used as a basis for estimating the high resolution soil moisture, and the application of the COMS can be expanded for various studies.

ESTIMATION OF SUGAR AND REDUCING SUGAR IN MOLASSES USING NEAR INFRARED REFLECTANCE SPECTROSCOPY

  • Mehrotra, Ranjana;Gupta, Alka;Tewari, Jagdish;Varma, S.P.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1258-1258
    • /
    • 2001
  • Estimation of sugar and reducing sugar content in molasses is very important task in sugar refineries. Conventional methods of determination of sugar content in molasses samples are highly time consuming and employ hazardous chemicals. Due to the physical properties of molasses, probability of error in conventional analytical techniques is high. These methods have proven to be inefficient for a process control in any sugar industry. Hence development of a rapid, inexpensive, physical and also accurate method for sugar determination in molasses will be highly useful. Near Infrared spectroscopy is being widely used worldwide as an analytical technique in food industry. The technique offers the advantage of being non-destructive and rapid. The present paper highlights the potential of near infrared reflectance spectroscopy as a rapid and automated analytical technique for determination of sugar and reducing sugar content in molasses. A number of molasses samples were collected during and after the sugar season from Havana Sugar Industry, Havana. The samples were chosen so as to obtain a wide range of concentration of sugar and reducing sugars. This was done in order to achieve a good calibration curve with widely spread data points. These samples were scanned in the region of 1100 - 2500 nm in diffuse reflectance mode. An indigenous ELICO NIR spectrophotometer, modified according to the requirements of sugar industry was used for this purpose. Each sample was also analyzed simultaneously by standard chemical methods. Chemical values were taken as reference for near infrared analysis. In order to obtain the most accurate calibration for the set of samples, various mathematical treatments were employed. Partial Least Square method was found to be most suitable for the analysis. A comparison is made between the actual values (chemical values) and the predicted values (NIR values). The actual values agree very well with the predicted values showing the accuracy of the technique. The validity of the technique is checked by predicting the concentration of sugar in unknown molasses samples using the calibration curve. The present investigation assesses the feasibility of the technique for on-line monitoring of sugars present in molasses in sugar industries.

  • PDF