• Title/Summary/Keyword: Wicking effect

Search Result 14, Processing Time 0.022 seconds

Effect of Yarns Cross-Sections and Structure Parameters of Its Knitted Fabrics to Moisture Transport of Perspiration Absorption and Fast Dry Fabrics (실 단면 형상과 니트 구조 인자가 흡한속건 소재의 수분이동 특성에 미치는 영향)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2018
  • This study examined the water absorption and drying properties of the thirteen types of the knitted fabrics for sports wear. These physical properties were analysed with relation to the constituent fiber cross-sectional shape and structure parameters of the knitted fabrics by regression analysis. Absorption and drying properties of the knitted fabric specimens were increased with increasing the porosity of the constituent yarns, which was attributed to the capillary channels in the yarns. The water absorption and drying properties were increased and decreased with increasing tightness factor and stitch density of the knitted fabric. The absorption property of the knitted fabric for perspiration absorption and fast dry sport-wear clothing was mostly influenced mostly by fiber cross-sectional shape and its characteristics, whereas, drying property was dependent on the structural parameters of the knitted fabric such as tightness factor and stitch density. Therefore, superior perspiration absorption and fast drying knitted fabric could be obtained in the fabric structure with optimum tightness factor and stitch density, and constituent yarn structure with non-circular fiber crosssection and high porosity. GATS method and MMT method are used to measure sweating fast drying properties and it is necessary to carry out studies using these measurement methods in order to compare with the results of this study.

A Study on the Bleaching of Cotton Fabrics by utilizing Ozone(($O_{3}$) (오존($O_{3}$)을 이용한 면직물의 표백에 관한 연구)

  • Cho, Hwan;Seo, Mal Young;Yu, Jae Sun;Lee, Byung Hyun;Huh, Man Woo;Lee, Kwang Woo;Cho, In Sul;Jong, Hee Cheon
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.49-59
    • /
    • 1993
  • In order to study the bleaching of cotton fabrics, ozone which has been produced by an ozone generator, has been contacted with cotton fabrics in water at various conditions. The equipments used for the ozone treatment of cotton fabrics were the ozone generator and a liquor/ozone contactor. For the examination of the ozone bleaching effect on cotton fabrics the whiteness, tensile strength, wettability and clark softness of the ozone treated cotton fabrics were measured. The conclusion obtained were, ozone concentration was increased, as the voltage was increased and flow rate was decreased and oxygen amount was increased. Bleaching effect of treated fabrics increased with increasing attributed more the net concentration of ozone rather than the total ozone amount of produced. The whiteness of treated fabrics was found to be best when treating temperature was 15~20<$^{\circ}C$, in acidic condition. The tensile strength of treated fabrics decreased as the treating time increased, and as the temperature raised, and the acidity increased. The wicking distance of treated fabrics increased slightly with increasing the treating time and the temperature. Clark softness of treated fabrics was not changed until passing 30min. of the treating time, then it decreasing linealy with increasing the treating time.

  • PDF

The Effect of Precipitated Calcium Carbonate Having a Small Particle Size on the Print Quality of an Inkjet-Grade Paper (초미립자탄산칼슘이 잉크제트 인쇄품질에 미치는 영향)

  • Lee Yong-Kyu;Lee Hee-Myung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.38-46
    • /
    • 2005
  • Experimental work was carried out in order to produce a novel grade of ink-jet paper that has both high print-out quality and price competitiveness. Usually, silica and PVOH has been used for ink-jet paper to design the coating layer that has a hydrophilic and micro-porous structure. However, poor rheological characteristics and low productivity of the silica-PVOH system make the price of the ink-jet paper high. The main focus of this study was replacing the conventional silica (coating pigment) PVOH (binder) coating system with the new PCC (coating pigment) cationic starch (binder) coating system, and optimizing thecoating technology associated with PPC-cationic starch system. In this study, ink-jet print quality of PCC-coated papers was compared with that of silica-coated paper. Two types of PCC were used: conventional type and colloid type. It turned out that PCC C, a conventional coating pigment, has not given a desirable result: it showed high dot reproduction, but it gave low optical density. In spite of low dot reproduction, the qualities of PCC A were comparable or superior to those of silica in optical density, color reproduction, and the uniformity of printing surface. It was also shown that the problems that are happened when the dosage level of cationic starch was too low were varied with ink-type used in each printer. However, in the case of low binder level, the produced image was widely spread resulting fromtoo low optical density of images, or from the lack of bonding ability to set ink into coating surface.

Effect on Nonionic Surfactant Solutions on Wetting and Absorbancy of Cotton Fabrics (비이온계 계면활성제 수용액이 면직물의 습윤특성에 미치는 영향)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.8
    • /
    • pp.1444-1452
    • /
    • 2001
  • Textile materials are frequently in contact with surfactant solutions during their manufacturing or finishing processes as well as cleaning processes in use. Liquid wetting, wicking and absorbency of textile materials, and the liquid properties, surface characteristics and pore geometry of textile materials, and the liquie-solid interactions, In this paper, 10 different nonionic surfactants, including Span 20, Twen 20, 40, 60, 80, 21, 61, 81, 65, 85, were used. The surfactants were characterized by their hydrophile-lipophile-balance (HLB) values, structures, and surface tensions. The 0.1g/dL and 1.0g/dL surfactant solutions, which were both above critical micelle concentration (CMC), were used to see the concentration effects on the wetting and absorbency of cotton fabrics. The wetting behavior and liquid retention properties of hydrophobic cotton fabrics with different nonionic surfactant solutions are reported. The contact angles are greatly decreased and the water retention values are greatly increased by adding most of the surfactants studied into the system. The extents of this effects are influenced by the characteristics of surfactants and its solutions. Hydrophilic surfactants which have low number of carbon atoms or unsaturated hydrophobe structures are more effective in improving the wetting and absorbancy of hydrophobic cotton fabrics. The water retention of hydrophobic cotton fabrics has positive relations with $cos{\theta}$, adhesion tension and work of adhesion. The 1.0g/dL surfactant solutions show similar, but slightly improved wetting and absorbency characteristics of hydrophobic cotton fabrics compared to the 0.1g/dL surfactant solutions.

  • PDF