실내 Wi-Fi환경에서 위치추정 정확도를 향상시키기 위한 위치추정에 대한 연구가 수년 동안 계속되어 오고 있다. 핑거프린트 기법 및 전파모델은 실내 위치추정에 있어서 매우 중요한 기술이다. 추가적인 하드웨어 없이 저비용으로 핑거프린트 기법을 사용하는 다양한 위치추정 시스템에 대한 연구가 진행되고 있다. 그러나 실내 위치추정 모델에서 VAP (virtual access points) 개념을 사용하여 이러한 목표를 실현한 사례는 매우 드물다. 본 논문은 Wi-Fi 환경의 핑거프린트 기반에서 VAP를 사용한 실내 위치추정 시스템의 아이디어를 제시하였다. 이 아이디어의 핵심은 실제 실내 Wi-Fi 환경에서 VAP를 사용하여 AP의 역할을 수행 할 수 있다. 제안 알고리즘의 성능분석을 위하여 4개의 시나리오를 사용하여 실험한 결과, 1개의 AP 대신에 2개의 VAP를 사용했을 때 가장 우수한 결과가 도출되었으며, 실험의 3번째 경우인 3개의 AP와 2개의 VAP를 사용했을 때 3.99 미터의 가장 낮은 위치오차가 발생하였음을 확인하였다.
실내 환경에서 사용자의 위치를 측위하는 다양한 기법들이 있다. 그중 와이파이 핑거프린트 기법은 데이터 수집 단계와 측위 단계로 구분된다. 데이터 수집 단계에서는 해당 위치 주변의 모든 와이파이 신호를 수집하여 리스트 형태로 관리한다. 수집된 데이터가 많을수록 실내측위 정확도가 향상된다. 기존 고품질 데이터 수집 및 관리 방법은 많은 시간과 비용이 소모되고, 기계학습에 필요한 데이터를 추출해 생성할 때 많은 연산이 필요하다. 따라서 한정된 자원 안에서 많은 데이터를 수집 및 관리할 수 있는 방법을 연구한다. 본 논문은 효율적인 데이터 수집 기법과 기계학습에 필요한 학습 데이터 관리 및 생성 기법을 제안한다.
본 논문은 사물인터넷 (Internet of Things: IoT) 기반의 실내 위치 추정 기법에 관한 논문이다. 현재 전 세계적으로 사물의 위치를 추정하는 방법은 GPS와 WiFi를 활용한 방법이 많이 사용되고 있다. 그러나 GPS는 실내에서 수신이 힘들고, 전파 교란에 영향을 받는 단점이 있다. WiFi를 활용한 위치 추정은 사용자가 주위의 WiFi를 스캔하여 수집한 정보를 WiFi 데이터베이스 (DB) 서버에 전송하여 fingerprint 방식으로 위치를 추정하므로, DB 서버가 필요한 단점이 있다. 사물과 사물이 통신하는 사물인터넷이 급속도로 증가하고 있다. 이러한 사물인터넷을 이용하여 실내 위치를 추정하는 기법을 제안한다. 제안된 기법은 GPS 좌표 등의 자신의 위치 정보를 가지고 있는 기기와 통신하는 다른 기기가 RSSI를 통해 위치를 추정한다. 사물인터넷을 통해 자신의 위치를 추정하는 기기가 많으면 위치 추정 정확도를 높일 수 있다. 제안된 기법은 GPS와 WiFi DB 서버의 도움 없이 위치 추정을 할 수 있다.
실내에서의 위치 추정을 위한 WiFi fingerprint 방식은 기존의 인프라를 이용하며 절대 좌표를 추정하는 장점이 있어 많은 연구가 진행되고 있다. 기존의 연구에서는 주로 위치 추정 알고리즘에 대한 연구에 집중되었지만 정확도를 개선하는 것이 한계에 도달했다. 그러나 스마트폰과 같은 무선랜 수신기에서 전파의 수신 감도보다 작은 신호는 측정이 불가하므로 이 값들을 처리하는 방법에 따라서 위치 추정 오차가 달라진다. 본 논문에서는 측정된 무선랜 공유기의 수신 신호 데이터를 다양한 방식으로 사전 처리하여 기존의 알고리즘에 적용함으로써 위치 추정 정확도를 높이는 방법을 제안하였고, 크게 향상된 정확도를 얻을 수 있었다. 또한 사전 처리된 데이터를 KNN 방식과 CNN 방식에 적용하여 그 성능을 비교하였다.
In this paper, a method of using Software Defined Radio (SDR) is proposed for improving the accuracy of identifying two kinds of signals as Wireless Fidelity (Wi-Fi) signal and Bluetooth signal at the same frequency band of 2.4 GHz based on the time-domain signal characteristic. An SDR device was set up for collecting transmitting signals from Wi-Fi access points (Wi-Fi) and mobile phones (Bluetooth). Different characteristics between Wi-Fi and Bluetooth signals were extracted from the measured result. The SDR device is programmed with a Wi-Fi and Bluetooth detection algorithm and a collision detection algorithm to detect and verify the Wi-Fi and Bluetooth signals based on collected IQ data. These methods are necessary for some applications like wireless communication optimization, Wi-Fi fingerprint localization, which helps to avoid interference and collision between two kinds of signals.
This paper presents a developing method of smart fingerprint recognition system. First, we design a hardware configuration circuit using a 32bit Risc CPU, a fingerprint sensor, a LCD, and a WiFi communication chip to realize the smart fingerprint recognition systems. It is necessary to develop a JNI (Java Native Interface) library and a device drive program of fingerprint sense to develop application program of fingerprint recognition system with Android platform. Thus second, we develop a device drive and a JNI program. And we also develop an application program of fingerprint recognition systems using developed JNI library. Finally test results are presented to illustrate the performance of the developed smart fingerprint recognition system.
LoRaWan(Long Range Wide Area Network)은 저전력, 장거리 특성을 가진 무선 통신기술로 그 특성상 스마트 시티(Smart City), IoT(Internet of Things) 등에 각광받고 있다. 또한 LoRaWan은 Chirp 신호 특성에 의해 실외 삼각측량에 따른 사용자 위치 추정 기술을 제공한다. 본 논문에서는 이러한 LoRaWan의 특성에 더해 Wi-Fi 지문 정보를 활용하여 위치 추정 정확도를 개선하고 또한 이웃 Wi-Fi 단말들, 가령 스마트폰 등의 위치 정보를 LoraWan 게이트웨이와 통신하여 최종적으로 서버에서 측위 할 수 있는 시스템을 제안한다.
실내에서의 위치를 추정하기 위한 기술 연구가 활발하게 진행되고 있다. 특히 추가적인 기반 시설을 필요로 하지 않는 WiFi fingerprint 방식은 경제성이 높아서 부분적으로 실용화되고 있다. 사전에 여러 지점에서 측정된 무선랜 수신 신호의 세기 정보와 추후에 특정 지점에서 측정된 세기 정보를 비교하여 유사한 지점을 해당 지점으로 추정하는 KNN 방식은 간단하지만 성능이 좋다. 그러나 기존의 KNN 방식은 평균하는 후보 위치들의 개수 K가 일정하므로, 특정 지점에 따라 위치 추정 오차가 최적화되지 못하는 문제가 있다. 본 논문에서는 특정 지점마다 K 값을 적응적으로 변화시키는 KNN 방식에서 평균 범위를 설정하는 알고리즘을 제안하고 실험 데이터에 적용하여 그 성능을 평가하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권5호
/
pp.1951-1972
/
2018
Wi-Fi Access Point (AP) optimization approaches are used in indoor positioning systems for signal coverage enhancement, as well as positioning precision improvement. Although the huge power consumption of the AP optimization forms a serious problem due to the signal coverage requirement for large-scale indoor environment, the conventional approaches treat the problem of power consumption independent from the design of indoor positioning systems. This paper proposes a new Fast Water-filling algorithm Group Power Constraint (FWA-GPC) based Wi-Fi AP optimization approach for indoor positioning in which the power consumed by the AP optimization is significantly considered. This paper has three contributions. First, it is not restricted to conventional concept of one AP for one candidate AP location, but considered spare APs once the active APs break off. Second, it utilizes the concept of water-filling model from adaptive channel power allocation to calculate the number of APs for each candidate AP location by maximizing the location fingerprint discrimination. Third, it uses a fast version, namely Fast Water-filling algorithm, to search for the optimal solution efficiently. The experimental results conducted in two typical indoor Wi-Fi environments prove that the proposed FWA-GPC performs better than the conventional AP optimization approaches.
본 논문에서는 실내 환경에서 정규분포 확률을 이용한 Wi-Fi 핑거프린트 방식과 스마트 폰에 내장된 가속도 센서 (accelerometer sensor), 자이로스코프 센서 (gyroscope sensor)를 이용하여 정확도를 향상시킨 위치추정 알고리즘을 제안하고, 실제 실험을 통하여 성능을 분석하였다. 제안한 알고리즘의 성능 실험은 본 대학교 공대 건물내의 가로 세로 20m * 10m의 공간에서 실시하였으며, 사용자가 각 구간을 이동 할 때 제안한 알고리즘의 위치추정 성능을 핑거프린트 (fingerprint) 방식과 추측항법 (dead reckoning)과 서로 비교하였다. 실험 결과, 제안한 알고리즘의 성능은 두 방식과 비교 했을 때, 최대 오차 거리는 각각 2cm, 36cm, 그리고 평균 오차 거리는 각각 16.64cm, 36.25cm 더 우수함을 확인하였다. 또한, 핑거프린트 맵 (map) 탐색 알고리즘의 성능도 맵 전체를 탐색하는 방식에 비해 약 0.15초 더 단축됨을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.