• Title/Summary/Keyword: Wi-Fi 6E Band

Search Result 5, Processing Time 0.016 seconds

Design of Dual-band Frequency Selective Surface Applicable to Wi-Fi 6E System (Wi-Fi 6E 시스템에 적용 가능한 이중대역 주파수 선택표면 구조 설계)

  • Yun-Seok Mun;Sung-Sil Cho;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • In this paper, a dual-band stopband frequency selective surface that can be applied to Wi-Fi 6E systems is designed to block external interfering signals with adjacent operating frequency spectrum in indoor wireless LAN environments. The proposed frequency selective surface structure has frequency blocking characteristics in the 2.4GHz and 6GHz bands, and is realized through a modified crossed dipole structure and an interlocking puzzle form between unit structures. The proposed structure is designed to have stable frequency response characteristics with respect to incident angle and polarization, and the experimental results show good agreement with the simulation results for incident waves from 0° to 45°.

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

A Study of Patch Antenna for 6GHz (6GHz 대역용 패치 안테나 연구)

  • Yong-Wook, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1063-1068
    • /
    • 2022
  • The modern society has become entry into the information age after the spread of Internet. In the information age, internet was developed from the wired access to the wireless Internet access. When a surge in demand for wireless Internet access, performance and speed of 2.4 and 5GHz band for Wi-Fi which leads to saturation of the communication was significantly fall. Accordingly, the communication of the 6GHz band for Wi-Fi 6E came to be interested. In this paper, we studied the design and fabrication of microstrip patch antenna to be used in wireless communication systems operating at around 6GHz band. To obtain antenna parameters such as patch size, inter patch space, antenna was simulated by HFSS(High Frequency Structure Simulator). From these parameters, slot microstrip patch antenna is fabricated using FR-4 of dielectric constant 4.4. The characteristics of fabricated patch type microstrip antenna were analyzed by network analyzer.

A Study on Notched Wi-Fi Bandwidth of Planar Monopole Antenna with Edge (에지를 가진 평면 모노폴 안테나의 무선랜 대역 저지에 관한 연구)

  • Lee, Yun Min;Lee, Jae Choon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.43-49
    • /
    • 2013
  • In this paper, it is designed inverted triangle structural planar monopole antenna with edge and rectangle slot for UWB(Ultra Wide Band) communication (3.1~10.6 GHz) and researched in about 5.8 GHz notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service. The antenna have broadband property structurally through inverted triangle structural planar monopole which have edge. and rectangle form addition planned notch slot of 1 mm and height 0.1 mm. Monopole and ground of proposed antenna exist on coplanar plane, and excite as CPW. It used FR4 epoxy dielectric substrate of ${\varepsilon}r$=4.4, and the size is $20{\times}20{\times}1.6$ mm dimension. The measured results that are obtained return loss under -10 dB through 3.1~10.6 GHz(7.5 GHz) without Wi-Fi bandwidth and maximum gain of 8.44 dBi at E-plane. Radiation pattern is about the same that of dipole antenna at all frequency. And using notch slot and it will be able to confirm the quality which becomes notch from 5.8 GHz which are a radio LAN frequency range.

Design, Fabrication and Measurement of a Compact, Frequency Reconfigurable, Modified T-shape Planar Antenna for Portable Applications

  • Iqbal, Amjad;Ullah, Sadiq;Naeem, Umair;Basir, Abdul;Ali, Usman
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1611-1618
    • /
    • 2017
  • This paper presents a compact reconfigurable printed monopole antenna, operating in three different frequency bands (2.45 GHz, 3 GHz and 5.2 GHz), depending upon the state of the lumped element switch. The proposed multiband reconfigurable antenna is designed and fabricated on a 1.6 mm thicker FR-4 substrate having a relative permittivity of 4.4. When the switch is turned ON, the antenna operates in a dual band frequency mode, i.e. WiFi at 2.45 GHz (2.06-3.14 GHz) and WLAN at 5.4 GHz (5.11-5.66 GHz). When the switch is turned OFF, it operates only at 3 GHz (2.44-3.66 GHz). The antenna radiates omni-directionally in these bands with an adequate, bandwidth (>10 %), efficiency (>90 %), gain (>1.2 dB), directivity (>1.7 dBi) and VSWR (<2). The fabricated antenna is tested in the laboratory to validate the simulated results. The antenna, due to its reasonably compact size ($39{\times}37mm^2$), can be used in portable devices such as laptops and iPads.