• 제목/요약/키워드: Whole-genome sequence

검색결과 226건 처리시간 0.022초

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

건강한 한국인 분변으로부터 분리된 Senegalimassilia sp. KGMB 04484 균주의 유전체 염기서열 초안 (Draft genome sequence of Senegalimassilia sp. KGMB 04484 isolated from healthy Korean human feces)

  • 한국일;강세원;김지선;이근철;엄미경;서민국;김한솔;박승환;이주혁;박잠언;오병섭;유승엽;최승현;이동호;윤혁;김병용;이제희;이정숙
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.160-163
    • /
    • 2019
  • 본 연구에서는 건강한 한국인 분변으로부터 Senegalimassilia sp. KGMB 04484 균주를 분리하였으며 PacBio Sequel 플랫폼을 이용하여 유전체서열을 분석하였다. 유전체는 G+C 구성비율이 61.18%이며, 2,300개의 유전자와 2,139개의 단백질 코딩 유전자, 21개의 rRNA 및 51개 tRNA로 구성되었으며, 염색체의 크기는 2,748,041 bp였다. 유전체의 주요 특징은 가수분해효소와 지방산생합성 및 대사에 관련된 유전자를 포함한다. 이러한 유전체의 분석은 KGMB 04484 균주가 사람의 건강 및 소화에 관여할 것으로 여겨진다.

건강한 한국인 분변으로부터 분리된 Olsenella sp. KGMB 04489 균주의 유전체 염기서열 초안 (Draft genome sequence of Olsenella sp. KGMB 04489 isolated from healthy Korean human feces)

  • 한국일;강세원;김지선;이근철;엄미경;서민국;박승환;이주혁;박잠언;오병섭;유승엽;최승현;이동호;윤혁;김병용;양승조;이정숙
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.456-459
    • /
    • 2018
  • Olsenella 속 균주들은 척추동물의 구강, 반추위 및 분변 등에서 분리된 것으로 알려져 있다. 본 연구에서는 건강한 한국인 분변으로부터 Olsenella sp. KGMB 04489 균주를 분리하였으며 PacBio Sequel 플랫폼을 이용하여 Olsenella sp. KGMB 04489 균주의 유전체서열을 분석하였다. 유전체는 G + C 구성 비율이 65.5%이고, 1,838개의 유전자와 rRNA 13개, tRNA 52개로 구성되었으며, 염색체의 크기는 2,108,034 bp였다. 또한, 유전체 분석 결과를 통해 가수분해효소와 항생제 합성 및 내성과 관련된 다양한 유전자를 발견하였다.

Characterization of a Strain of Malva Vein Clearing Virus in Alcea rosea via Deep Sequencing

  • Wang, Defu;Cui, Liyan;Pei, Yanni;Ma, Zhennan;Shen, Shaofei;Long, Dandan;Li, Lingyu;Niu, Yanbing
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.468-475
    • /
    • 2020
  • Malva vein clearing virus (MVCV) is a member of the Potyvirus species, and has a negative impact on the aesthetic development of Alcea rosea. It was first reported in Germany in 1957, but its complete genome sequence data are still scarce. In the present work, A. rosea leaves with vein-clearing and mosaic symptoms were sampled and analyzed with small RNA deep sequencing. By denovo assembly the raw sequences of virus-derived small interfering RNAs (vsiRs) and whole genome amplification of malva vein cleaning virus SX strain (MVCV-SX) by specific primers targeting identified contig gaps, the full-length genome sequences (9,645 nucleotides) of MVCV-SX were characterized, constituting of an open reading frame that is long enough to encode 3,096 amino acids. Phylogenetic analysis showed that MVCV-SX was clustered with euphorbia ringspot virus and yam mosaic virus. Further analyses of the vsiR profiles revealed that the most abundant MVCV-vsiRs were between 21 and 22 nucleotides in length and a strong bias was found for "A" and "U" at the 5′-terminal residue. The results of polarity assessment indicated that the amount of sense strand was almost equal to that of the antisense strand in MVCV-vsiRs, and the main hot-spot region in MVCV-SX genome was found at cylindrical inclusion. In conclusion, our findings could provide new insights into the RNA silencing-mediated host defence mechanism in A. rosea infected with MVCV-SX, and offer a basis for the prevention and treatment of this virus disease.

Complete Genome of Bacillus subtilis subsp. subtilis KCTC 3135T and Variation in Cell Wall Genes of B. subtilis Strains

  • Ahn, Seonjoo;Jun, Sangmi;Ro, Hyun-Joo;Kim, Ju Han;Kim, Seil
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1760-1768
    • /
    • 2018
  • The type strain Bacillus subtilis subsp. subtilis KCTC $3135^T$ was deeply sequenced and annotated, replacing a previous draft genome in this study. The tar and tag genes were involved in synthesizing wall teichoic acids (WTAs), and these genes and their products were previously regarded as the distinguishing difference between B. s. subtilis and B. s. spizizenii. However, a comparative genomic analysis of B. subtilis spp. revealed that both B. s. subtilis and B. s. spizizenii had various types of cell walls. These tar and tag operons were mutually exclusive and the tar genes from B. s. spizizenii were very similar to the genes from non-Bacillus bacteria, unlike the tag genes from B. s. subtilis. The results and previous studies suggest that the tar genes and the tag genes are not inherited after subspecies speciation. The phylogenetic tree based on whole genome sequences showed that each subspecies clearly formed a monophyletic group, while the tree based on tar genes showed that monophyletic groups were formed according to the cell wall type rather than the subspecies. These findings indicate that the tar genes and the presence of ribitol as a cell-wall constituent were not the distinguishing difference between the subspecies of B. subtilis and that the description of subspecies B. s. spizizenii should be updated.

The complete mitochondrial genome of the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae)-a climate-sensitive indicator species in South Korea

  • Seung Hyun Lee;Jeong Sun Park;Jee-Young Pyo;Sung-Soo Kim;Iksoo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제46권2호
    • /
    • pp.41-54
    • /
    • 2023
  • The blue-tailed damselfly, Ischnura elegans Van der Linden, 1820 (Odonata: Coenagrionidae), is a climate-sensitive indicator species in South Korea. In this study, we sequenced the complete mitochondrial genome (mitogenome) of I. elegans collected from South Korea for subsequent population genetic analysis, particularly to trace population movements in response to climate change. The 15,963 base pair (bp)-long complete mitogenome of I. elegans has typical sets of genes including a major non-coding region (the A+T-rich region), and an arrangement identical to that observed in ancestral insect species. The ATP6, ND3 and ND1 genes have the TTG start codon, which, although rare, is the canonical start codon for animal mitochondrial tRNA. The A/T content was 71.4% in protein-coding genes, 72.1% in tRNAs, 72.9% in the whole genome, 74.7% in srRNA, 75.3% in lrRNA, and 83.8% in the A+T-rich region. The A+T-rich region is unusually long (1,196 bp) and contains two subunits (192 bp and 176-165 bp), each of which is tandemly triplicated and surrounded by non-repeat sequences. Comparison of the sequence divergence among available mitogenomes of I. elegans, including the one from the current study, revealed ND2 as the most variable gene, followed by COII and COI, suggesting that ND2 should be targeted first in subsequent population-level studies. Phylogenetic reconstruction based on all available mitogenome sequences of Coenagrionidae showed a strong sister relationship between I. elegans and I. senegalensis.

Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp.nov. from Korean Soil

  • Yong Guan;Zhun Li;Yoon-Ho Kang;Mi-Kyung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.753-759
    • /
    • 2023
  • The genus Paenibacillus contains a variety of biologically active compounds that have potential applications in a range of fields, including medicine, agriculture, and livestock, playing an important role in the health and economy of society. Our study focused on the bacterium SS4T (KCTC 43402T = GDMCC 1.3498T), which was characterized using a polyphasic taxonomic approach. This strain was analyzed using antiSMASH, BAGEL4, and PRISM to predict the secondary metabolites. Lassopeptide clusters were found using all three analysis methods, with the possibility of secretion. Additionally, PRISM found three biosynthetic gene clusters (BGC) and predicted the structure of the product. Genome analysis indicated that glucoamylase is present in SS4T. 16S rRNA sequence analysis showed that strain SS4T most closely resembled Paenibacillus marchantiophytorum DSM 29850T (98.22%), Paenibacillus nebraskensis JJ-59T (98.19%), and Paenibacillus aceris KCTC 13870T (98.08%). Analysis of the 16S rRNA gene sequences and Type Strain Genome Server (TYGS) analysis revealed that SS4T belongs to the genus Paenibacillus based on the results of the phylogenetic analysis. As a result of the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) results, SS4T was determined to belong to the genus Paenibacillus. Comparing P. marchantiophytorum DSM 29850T with average nucleotide identity (ANI 78.97%) and digital DNA-DNA hybridization (dDDH 23%) revealed values that were all less than the threshold for bacterial species differentiation. The results of this study suggest that strain SS4T can be classified as a Paenibacillus andongensis species and is a novel member of the genus Paenibacillus.

생물정보를 이용하여 바실러스 서브틸리스에서 새로운 Small RNA를 예측하는 방법 (Searching Method for New Small RNA in Bacillus subtilis Using Bioinformation)

  • 이상수
    • 자연과학논문집
    • /
    • 제18권1호
    • /
    • pp.47-53
    • /
    • 2007
  • 바실러스 서브틸리스 유전체에서 여러 환경의 적응에 이용할 것으로 보이는 새로운 small RNA를 찾는 시도로 다음과 같은 방식으로 유전체를 검색하였다. 첫째로 유전자들 사이에 존재하는 DNA 서열을 대상으로 전사인자들인 PerR, OhrR, Fur, Zur의 인식서열을 조사하였고, 둘째로 인자 비의존성 전사종결 부위를 조사하였다. 이들 조사에서 전사인자의 위치와 전사종결부위가 300 bp 내외에서 가까이 존재하는 후보 DNA 서열을 대상으로 전사인자 부위에서 전사촉진자의 서열이 발견되는지를 조사하였다. 이 결과 PerR 5개, Fur 2개, OhrR, Zur에서 각각 1개의 새로운 small RNA로 추정되는 부위가 발견되었다.

  • PDF

다염기변이 유전체에 대한 서열 정렬 툴 분석 (Analysis of sequence alignment Tools on polymorphic genomes)

  • 김유선;김종현;여윤구;김우철;박상현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.217-221
    • /
    • 2008
  • 생명공학 기술의 발달로 지놈 프로젝트를 통해 인간 초파리 등 여러 종의 유전체 정보가 밝혀 졌다. 그러나 Post-Genome 연구에 있어서 매우 중요한 생물체인 멍게(Ciona intestinalis)와 성게(Strongylocentrotus purpuratus)의 유전체 서열은 현재 공개되어 있으나 염기서열의 연속성(continuity)에는 심각한 문제점이 존재하고 있다. 이들은 염기서열에 변이가 많은 다염기변이 유전체(polymorphic genomes)로 그 특성이 반영되지 않은 전통적인 Whole Genome Shotgun Sequencing(WGSS)방법을 사용였기 때문이다. 이와 같은 다염기변이 유전체 서열 분석은 시스템 생물학이나 비교 유전체학 등의 후발 연구에 기초가 되므로 매우 중요하다. 본 논문에서는 다염기변이 유전체에 대해 알아보고 서열 조립 알고리즘의 기본이 되는 서열 정렬 툴들 중 가장 많이 사용되는 FASTA, BLAST, BLAT에 대해 분석하여 봄으로써 다염기변이 유전체에 적합한 서열 조립 전략 수립을 위해 고려해야 하는 사항들을 논의해 본다.

  • PDF

A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder

  • Komachali, Sajad Rafiee;Sheikholeslami, Mozhgan;Salehi, Mansoor
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.24.1-24.8
    • /
    • 2022
  • Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.