• Title/Summary/Keyword: Whole-crop Cereals

Search Result 13, Processing Time 0.028 seconds

Changes of Feed Quality at Different Cutting Dates among Five Winter Cereals for Whole-Crop Cereal Silage in Middle Region (중부지역에서 총체맥류의 예취시기별 사료가치 변화)

  • Ju, Jung-Il;Lee, Joung-Jun;Park, Ki-Hun;Lee, Hee-Bong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.187-196
    • /
    • 2009
  • The objectives of this study were to evaluate the different cutting dates on the changes of feed quality among five cereals (barley, wheat, rye, triticale and oat) for whole crop silage. Field trials were conducted at paddy field in Yesan, Chungnam Province and the aerial parts were clipped 10 days from 15 March to 15 June. Changes of acid detergent fiber (ADF) content in relation to different cutting dates was described by a quadratic curve for 5 winter cereals crops. ADF content reached a maximum at 5 days after heading in barley cultivar 'Youngyang', 7 days in wheat 'Keumkang', 18 days in rye 'Gogu', 1 days in triticale 'Shinyoung' and 10 days in oat 'Samhan'. Neutral detergent fiber (NDF) content were linearly increased as growing after overwintering and stagnated or slightly decreased after heading. The crude protein were linearly decreased throughout the growth period of 5 whole crop cereals. Digestible dry matter (DDM) content were decreased from early stages to heading and subsequently increased as grain filling. Relative feed value (RFV) for 5 crops were decreased as growing and subsequently increased as grain filling after heading. Barley cultivar for only forage use 'Youngyang' were lower at ADF and NDF content and higher at DDM and RFV after heading than those of other cereals for forage use. So, barley for whole crop silage was a good crop with high feed quality and high proportion of spikes compared with other winter cereal crops. Wheat cultivar for grain 'Keumkang' were higher at crude protein than those of other four cereals from overwintering to maturing and were higher at DDM and RFV after heading than those of rye, triticale and oat. Rye cultivar with cold tolerant and high fresh yielding 'Gogu' were highest at ADF and NDF content and lowest at DDM content and RFV. So, rye was a crop with low quality for forage use compared to other winter cereal crops. Triticale cultivar with flourishing and high yielding 'Shinyoung' was intermediated between barley and rye, and were linearly increased at DDM yield by different cutting dates. Oat cultivar with cold tolerant and high tillering 'Samhan' were lower at ADF and NDF content and higher at crude protein before heading, but after heading, there are not especially advantages compared to barley, wheat or triticale.

Effects of restricted feeding with fermented whole-crop barley and wheat on the growth performance, nutrient digestibility, blood characteristic, and fecal microbiota in finishing pigs

  • Lee, Chang Hee;Kim, Hyeun Bum;Ahn, Jung Hyun;Jung, Hyun Jung;Yun, Won;Lee, Ji Hwan;Kwak, Woo Gi;Oh, Han Jin;Liu, Shu Dong;An, Ji Seon;Song, Tae Hwa;Park, Tae Il;Kim, Doo Wan;Yu, Dong Jo;Song, Min Ho;Cho, Jin Ho
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.665-675
    • /
    • 2018
  • A total of 80 pigs [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] with an average body weight of $72.9{\pm}2.6kg$ were used in the present study to investigate the effects of fermented whole crop wheat and barley with or without supplementing inoculums throughout the restricted feeding in finishing pigs. There were 4 replicate pens per treatment. Pigs were fed ad libitum throughout the experiment as the control (CON), and the other four groups were restricted to 10% in the CON diet and fed ad libitum fermented whole crop cereals: fermented whole crop barley with inoculums; fermented whole crop barley without inoculums; fermented whole crop wheat with inoculums; and fermented whole crop wheat without inoculums. During the entire experiment, the average daily feed intake (ADFI) decreased in the fermented barley and fermented wheat groups compared to the CON, while no difference was observed in the average daily gain (ADG), feed efficiency (gain : feed ratio, G : F) between the control and fermented whole crop barley, wheat diet group. Dry matter and nitrogen digestibility did not show a significant difference among the treatments. In the blood constituents, concentrations of blood urea nitrogen were significantly lower in pigs fed fermented whole crop barley without inoculum diets compared with the other treatments. In conclusion, restricted feeding with fermented whole crop barley and wheat regardless of the supplementing inoculums showed no significant difference in growth performance compared to the CON. This suggests that there is a possibility that fermented whole crop barley and wheat could replace part of the conventional diets.

Changes of Growth and Forage Yield at Different Cutting Dates among Five Winter Cereals for Whole Crop Silage in Middle Region (중부지역에서 총체맥류의 예취시기별 생육 및 조사료 수량 변화)

  • Ju, Jung-II;Choi, Hyun-Gu;Gang, Young-Sik;Lee, Joung-Jun;Park, Ki-Hun;Lee, Hee-Bong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.2
    • /
    • pp.111-120
    • /
    • 2009
  • There are barley, wheat, oat, rye and triticale winter cereal crops for whole crop silage. These small grains have been suitable to use for round-baled silage making as livestock feed. Studies were carried out to understand the growth and productivity of five winter cereals grown at paddy field in middle region of South Korea. The ratio of culm weight per plant were described by quadratic function for 5 winter cereals crops. The peak of culm ratio were 1 May in barley variety 'Youngyang', 5 May in wheat variety Keumkang', 10 May in rye 'Gogu'(Rye), 11 May in triticale variety 'Shinyoung' and 13 June in oat variety 'Samhan', respectively. The ratio of leaf per plant were linearly decreased by growing. In barley and oat, the ratio of spike weight per plant were linearly increased after heading, but in wheat and triticale, it were not accumulated at one time after heading and rapidly increased after fertilization. The ratio of spike weight per plant in barley was outstandingly higher than that of wheat, triticale, rye and oat, respectively. So, barley variety 'Youngyang' recommended for whole crop forage use was suitable for forage use because of high at ratio of the leaf and spike. The proper cutting date by the percentage of dry matter for baled-silage making, 30$[\sim}$40%, were 25 May in barley variety 'Youngyang', 25 May to 5 June in wheat variety 'Keumkang' and triticale variety 'Shinyoung', 15 May in rye 'Gogu' and 5 June in oat variety 'Samhan', respectively. The total aerial fresh weight accumulation at different cutting dates were described by quadratic function for barley, wheat and triticale. The forage fresh yield were peaked at 7 May in barley, 14 May in wheat, 17 May in triticale and late of May in oat, respectively. The dry matter yields of four small cereals were linearly increased after over-wintering. The yield at the date of proper harvesting time by water content for baled silage making were sequently high oat, barley, wheat, triticale and rye. The relative growth rate was relatively high in rye at early cutting but high in oat at late cutting. In barley, wheat and triticale, the rate were similar.

The Effect of Bacterial Inoculants and a Chemical Preservative on the Fermentation and Aerobic Stability of Whole-crop Cereal Silages

  • Filya, Ismail;Sucu, Ekin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.378-384
    • /
    • 2007
  • Three microorganisms and one chemical preservative were tested for their effects on the fermentation and aerobic stability of whole-crop wheat, sorghum and maize silages. Wheat at the early dough stage, sorghum at the late milk stage and maize at the one-third milk line stage were harvested and ensiled in 1.5-l anaerobic jars untreated or after the following treatments: control (no additives); Lactobacillus plantarum (LP) at $1.0{\times}10^6$ colony-forming units (CFU)/g of fresh forage; L. buchneri (LB) at $1.0{\times}10^6$ CFU/g; Propionibacterium acidipropionici (PA) at $1.0{\times}10^6$ CFU/g; and a formic acid-based preservative (FAP) at 3 ml/kg of fresh forage weight. Three jars per treatment were sampled on d 90 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 90 d, the silages were subjected to an aerobic stability test lasting 5 d. In this test, $CO_2$ produced during aerobic exposure was measured along with chemical and microbiological parameters which serve as spoilage indicators. The silages inoculated with LP had higher concentration of lactic acid compared with the controls and the other treated silages (p<0.05). The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages. The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages due to more $CO_2$ production (p<0.05) in these two groups and development of yeasts unlike the other groups. In the experiment, the silages treated with LB, PA and FAP were stable under aerobic conditions. However, the numbers of yeasts was higher in the LP-inoculated wheat, sorghum and maize silages compared with the LB, PA and FAP-treated silages. The LB, PA and FAP improved the aerobic stability of the silages by causing more extensive heterolactic fermentation that resulted in the silages with high levels of acetic and propionic acid. The use of LB, PA and FAP as silage additives can improve the aerobic stability of whole-crop wheat, sorghum and maize silages by inhibition of yeast activity.

Changes in Physicochemical Characteristics of Green Barley according to Days after Heading (출수 후 일수에 따른 쌀보리 종실의 이화학적 특성 변화)

  • Ju, Jung-Il;Lee, Ka-Soon;Min, Hee-Il;Lee, Byung-Jin;Kwon, Byung-Gu;Gu, Ja-Hyeong;Oh, Man-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.36-44
    • /
    • 2007
  • In order to evaluate the utilization of immature green barley kernels as food processing material, these experiments were carried out to analyze free sugars, free amino acids, mineral contents and color of two naked barley varieties according to their heading dates. Contents such as moisture, protein, fat, ash, and free sugars were gradually decreased according to the days after heading of the nonwaxy naked barley 'Saessalbori' and waxy naked barley 'Hinchalssalbori', while crude fiber and starch were gradually increased. Contents like maltose and maltotriose in immature green kernels were high, but free amino acids showed a tendency to decrease, among which the alanine content was the highest. As barley matured, beta-glucan content, redness and yellowness increased, while lightness decreased. Considering chemical composition and color, the immature green cereals were produced through blanching the spikes harvested before the yellow ripe stage around $26{\sim}27$ days after heading. The optimum duration of harvest was very limited to produce green whole grains. The harvested green barley cereals is able to eat raw barley or cook it as food processing material.

Mapping QTLs for Tissue Culture Response of Mature Wheat Embryos

  • Jia, Haiyan;Yi, Dalong;Yu, Jie;Xue, Shulin;Xiang, Yang;Zhang, Caiqin;Zhang, Zhengzhi;Zhang, Lixia;Ma, Zhengqiang
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of 'Wangshuibai' with 'Nanda2419', which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.

Comparisons of Growth, Yield and Feed Quality at Spring Sowing among Five Winter Cereals for Whole-crop Silage Use (총체맥류 주요품종의 봄 파종에 따른 생육, 수량 및 사료가치 비교)

  • Ju, Jung-Il;Lee, Dong-Hee;Seong, Yeul-Gue;Han, Ouk-Kyu;Song, Tae-Hwa;Lee, Kwang-Won;Kim, Chang-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.3
    • /
    • pp.205-216
    • /
    • 2010
  • Few spring sowing have been conducted on winter cereal crops for whole-crop silage use. Experiments were conducted during 2007 and 2008 at the Chungnam Agricultural Research & Extension Services. The objectives of this study were compared the spring sowing with the optimum season's sowing on growth, yield and feed quality in five winter cereal crops. The treatments consisted of 5 winter cereal crops, Youngyang (Barley, Spring habit I), Keumkang (Wheat, Spring habit II), Gogu(Rye, Spring habit estimated III), Shinyoung (Triticale, Spring habit estimated III), Samhan(Oat, Spring habit estimated II), and 3 planting dates, 18 October (optimum season's sowing), 23 February and 10 March in spring. Heading days as affected by spring sowing compared to optimum season sowing were delayed by 16~20 days in barley, wheat, rye and triticale, and 9 days in oat. The clipping dates at the optimal harvesting stage of each crop for round-baled silage in spring sowing was 8 June (yellow ripe stage) in barley, 25 May (10 days after heading) in rye, and 17 June in wheat (yellow ripe stage), triticale (milky stage) and oat (milky stage). The accumulative temperature from emergence to heading was significantly decreased as affected by spring sowing compared to optimum season's sowing, but that of sowing to emergence and that of heading to maturing was similar. The rate of spikes per tillering surveyed at each clipping date was 62.0-73.1 percent in barley, wheat, triticale and oat, and 56.0 percent in rye compared to that of optimum season sowing. The dry matter yield in spring sowing compared to 18 October was obtained about 71.7 percent in barley, 60.6 percent in wheat, 46.2 percent in rye, 70.2 percent in triticale and 110.9 percent in oat. It were increased in acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude protein content, but decreased in digestible dry matter content(DDM) and relative feed value (RFV). The yield of DDM by spring sowing was decreased in barley, wheat, rye and triticale, but increased in oat. The yield of dry matter and DDM were higher in oat and triticale than that of barley, wheat and oat. So, regardless to clipping dates and cropping system, the appropriated crop for spring sowing was oat, and subsequently triticale and barley. It was not adopted for spring sowing in rye because of low rate of no. of spikes per tillers and yield. It was necessary eliminated winter growing nature by earlier sowing at the late of February after overwinter.

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

Seed Blending Effect on Growth, Yield and Feed Value among Four Winter Cereals for Whole Crop Silage (맥종간 혼파재배시 생육, 조사료 생산성 및 사료가치 비교)

  • Ju, Jung-Il;Lee, Seung-Su;Yoo, Ji-Hong;Lee, Joung-Jun;Park, Ki-Hun;Lee, Hee-Bong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.203-214
    • /
    • 2008
  • The overwintering crops, barley, wheat, oat and triticale etc, have been received in korea as high-quality roughage for round-baled silage making as livestock feed. Studies were carried out to evaluated the effects of seed blending on growth, yield and feed value between barley and wheat, triticale and oat, respectively. The results are summarized as follows : The barley was declined in the growth and spike's size as affected by sown as mixed seeding with triticale, but not effected with oat. The total fresh yield were increased by grown as mixed seeding with wheat, triticale and oat, but the dry matter yield were not significantly increased because of the low percentage of dry matter and the decrease of barley's growth. The neutral detergent fiber (NDF) and crude protein content were increased by seed blending, but acid detergent fiber (ADF) and digestible dry matter (DDM) content were decreased. The feed value was improved by seed blending of barley and wheat, but not significant at seed blending of triticale and oat. Because of the flourishing tillers, difference of heading date and abundant leaves of oat, the optimum crop for mixed seeding with barley for increment of forage productivity was oat in middle area of korea.

Growth Characters and Yield of Wheat Species Depend on Soil Fertility in Paddy Field (논토양 비옥도에 따른 맥류 초종별 생육특성과 수량성)

  • Ju, Jung-Il;Lee, Hee-Bong;Han, Ouk-Kyu;Song, Tae-Hwa;Ji, Hee-Chung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • Soil fertility different depend on application rate of manure and compost for many years. While each crop has different adaptability depend on soil fertility, crop and species or varieties should be chosen depending on the adaptability and productivity. These experiments were carried out to compare the five winter cereal crops for whole crop silage on growth, yield and feed value as affected by soil organic content. The rate of increase on no. of spikes at high fertile soil compared with medium fertile soil was sequently high Samhan (Oat's variety) > Cheongwoo (Wheat) > Gogu (Rye) > Youngyang (Barley) > Shinyoung (Triticale). The rate of decrease at low fertile soil compared with medium fertile soil was sequently high Youngyang > Gogu > Cheongwoo > Shinyoung > Samhan. The triticale was lower variation of no. of spikes as affected by soil organic content than that of other winter cereals. The variations of dry matter yield as affected by soil fertility was higher oat and barley and lower triticale. Forage yield of triticale was higher about 69 percent than that of barley at low fertile soil. Forage yield was the highest in triticale and the lowest in rye in all soil fertility. In high fertile soil, rate of increasing digestible dry matter (DDM) yield compared with medium fertile was high in Samhan and Youngyang. Rate of reduced DDM yield in low fertile soil compared with medium fertile was low in Shinyoung and Cheongwoo.