• Title/Summary/Keyword: Whole-breast irradiation

Search Result 26, Processing Time 0.021 seconds

Phase II Study on Breast Conservative Surgery Plus Chemo- and Radiotherapy in Treating Chinese Patients with Early Staged Breast Cancer

  • Liu, Yang-Chen;Zhou, Shao-Bing;Gao, Fei;Yin, Xiao-Xiang;Zhao, Ying;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3747-3750
    • /
    • 2013
  • Purpose: To evaluate the efficacy of conservative surgery plus chemo-, radio-therapy in treating patients with early stage breast cancer. Patients and Methods: Eligible patients were treated by postoperative chemotherapy as well as whole-breast irradiation with tumor bed boost. Postoperative radiotherapy consisted of 6 MV whole breast linear accelerator irradiation with two tangential half fields to a total dose of 45~50 Gy, followed by $10{\sim}15MeV{\beta}$ boost irradiation to tumor bed for 10~20Gy, total dose 56~66Gy. Results: Fifty-two patients were enrolled. Overall 1-, 2- and 3 year survival rates were 98.1%, 92.3%, and 90.4%, respectively, with a local recurrence rate of 5.77%. Cosmetic results were evaluated as good by doctors in 90.4% of patients. Conclusions: Breast conservative surgery combined with chemo- radio-therapy could be a treatment option for Chinese patients with early stage breast cancer.

Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery

  • Kim, Kyung Su;Shin, Kyung Hwan;Choi, Noorie;Lee, Sea-Won
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Hypofractionated whole breast irradiation (HF-WBI) has been proved effective and safe and even better for late or acute radiation toxicity for early breast cancer. Moreover, it improves patient convenience, quality of life and is expected to be advantageous in the medical care system by reducing overall cost. In this review, we examined key randomized trials of HF-WBI, focusing on adequate patient selection as suggested by the American Society of Therapeutic Radiology and Oncology (ASTRO) guideline and the radiobiologic aspects of HF-WBI in relation to its adoption into clinical settings. Further investigation to identify the current practice pattern or cost effectiveness is warranted under the national health insurance service system in Korea.

Regional nodal irradiation in pT1-2N1 breast cancer patients treated with breast-conserving surgery and whole breast irradiation

  • Park, Shin-Hyung;Kim, Jae-Chul
    • Radiation Oncology Journal
    • /
    • v.38 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • Purpose: To evaluate the necessity of regional nodal irradiation (RNI) for pT1-2N1 breast cancer patients treated with breast-conserving surgery and radiotherapy, we compared clinical outcomes of patients treated with and without RNI. Materials and Methods: We retrospectively analyzed the data of 214 pT1-2N1 breast cancer patients treated with breast-conserving surgery and whole breast irradiation from 2007-2016. There were 142 (66.4%), 51 (23.85%), and 21 (9.8%) patients with one, two, and three positive lymph nodes, respectively. Thirty-six patients (16.8%) underwent RNI. Adjuvant chemotherapy, endocrine therapy, and anti-HER2 therapy were given to 91.6%, 79.0%, and 15.0% patients, respectively. The most common chemotherapy regimen was anthracycline + cyclophosphamide, followed by taxane (76.5%). The median follow-up was 64 months (range, 6 to 147 months). Patients were propensity matched 1:2 into RNI and no-RNI groups. Results: Two patients experienced locoregional recurrences simultaneously with distant metastases, ten patients developed distant metastases, and one patient died. Before matching, the 5-year actuarial locoregional control (LRC), distant metastasis-free survival (DMFS), and overall survival (OS) rates in the RNI and no-RNI groups were 100.0% and 99.4% (p = 0.629), 94.1% and 96.0% (p = 0.676), and 100.0% and 99.4% (p = 0.658), respectively. After matching, the 5-year LRC, DMFS, and OS were 98.3% and 100.0% (p = 0.455), 96.6% and 93.9% (p = 0.557), and 100.0% and 100.0% (p > 0.999) in the RNI and no-RNI groups, respectively. No clinicopathologic or treatment-related factors were significantly associated with LRC, DMFS, or OS. Conclusion: Adding RNI did not show superior LRC, DMFS, or OS in pT1-2N1 breast cancer patients.

Virtual lymph node analysis to evaluate axillary lymph node coverage provided by tangential breast irradiation

  • Park, Shin-Hyung;Kim, Jae-Chul;Lee, Jeong Eun;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.33 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • Purpose: To investigate the coverage of axillary lymph node with tangential breast irradiation fields by using virtual lymph node (LN) analysis. Materials and Methods: Forty-eight women who were treated with whole breast irradiation after breast-conserving surgery were analyzed. The axillary and breast volumes were delineated according to the Radiation Therapy Oncology Group (RTOG) contouring atlas. To generate virtual LN contours, preoperative fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scans with identifiable LN were fused with the CT scans, and the virtual LN contour were delineated on the CT. Results: The median level I and II axillary volume coverage percentages at the $V_{D95%}$ line were 33.5% (range, 5.3% to 90.4%) and 0.6% (range, 0.0% to 14.6%), respectively. Thirty-one LNs in 18 patients were delineated (26 in level I and 5 in level II). In the level I axilla, 84.6% of virtual LNs were encompassed by the 95% isodose line. In the level II axilla, by contrast, none of the virtual LNs were encompassed by the 95% isodose volumes. There was a substantial discrepancy between the RTOG contouring atlas-based axillary volume analysis and the virtual LN analysis, especially for the level I axillary coverage. The axillary volume coverage was associated with the body mass index (BMI) and breast volume. Conclusion: The tangential breast irradiation did not deliver adequate therapeutic doses to the axillary region, particularly those in the level II axilla. Patients with small breast volumes or lower BMI showed reduced axillary coverage from the tangential breast fields. For axillary LN irradiation, individualized anatomy-based radiation fields for patients would be necessary.

Tumor bed volumetric changes during breast irradiation for the patients with breast cancer

  • Chung, Mi Joo;Suh, Young Jin;Lee, Hyo Chun;Kang, Dae Gyu;Kim, Eun Joong;Kim, Sung Hwan;Lee, Jong Hoon
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.228-233
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate changes in breast tumor bed volume during whole breast irradiation (WBI). Materials and Methods: From September 2011 to November 2012, thirty patients who underwent breast-conserving surgery (BCS) followed by WBI using computed tomography (CT) simulation were enrolled. Simulation CT scans were performed before WBI (CT1) and five weeks after the breast irradiation (CT2). The tumor bed was contoured based on surgical clips, seroma, and postoperative change. We retrospectively analyzed the factors associated with tumor bed volumetric change. Results: The median tumor bed volume on CT1 and CT2 was 29.72 and 28.6 mL, respectively. The tumor bed volume increased in 9 of 30 patients (30%) and decreased in 21 of 30 patients (70%). The median percent change in tumor bed volume between initial and boost CT was -5%. Seroma status (p = 0.010) was a significant factor in tumor bed volume reduction of 5% or greater. However, patient age, body mass index, palpability, T stage, axillary lymph node dissection, and tumor location were not significant factors for tumor bed volumetric change. Conclusion: In this study, volumetric change of tumor bed cavity was frequent. Patients with seroma after BCS had a significant volume reduction of 5% or greater in tumor bed during breast irradiation. Thus, resimulation using CT is indicated for exquisite boost treatment in breast cancer patients with seroma after surgery.

Volumetric changes in the lumpectomy cavity during whole breast irradiation after breast conserving surgery

  • Cho, Heung-Lae;Kim, Cheol-Jin
    • Radiation Oncology Journal
    • /
    • v.29 no.4
    • /
    • pp.277-282
    • /
    • 2011
  • Purpose: This study was performed to evaluate the change in the lumpectomy cavity volumes before and after whole breast radiation therapy (WBRT) and to identify factors associated with the change of volume. Materials and Methods: From September 2009 to April 2010, the computed tomography (CT) simulation data from 70 patients obtained before and after WBRT was evaluated. The lumpectomy cavity volumes were contoured based on surgical clips, seroma, and postoperative changes. Significant differences in the data from pre-WBRT CT and post-WBRT CT were assessed. Multiple variables were examined for correlation with volume reduction in the lumpectomy cavity. Results: The mean and median volume reduction in the lumpectomy cavity after WBRT were 17.6 $cm^3$ and 16.1 $cm^3$, respectively with the statistical significance (p < 0.001). The volume reduction in the lumpectomy cavity was inversely correlated with time from surgery to radiation therapy (R = 0.390). The presence of seroma was significantly associated with a volumetric change in the lumpectomy cavity after WBRT (p = 0.011). Conclusion: The volume of lumpectomy cavity reduced significantly after WBRT. As the time from surgery to the start ot WBRT increased, the volume reduction in the lumpectomy cavity during WBRT decreased. A strong correlation was observed between the presence of seroma and the reduced volume. To ensure appropriate coverage and to limit normal tissue exposure during boost irradiation in patients who has seroma at the time of starting WBRT, repeating CT simulation at boost planning is suggested.

Quality Improvement of Chicken Breast Meat in a Group-Meal Service by Gamma Irradiation (감마선조사에 의한 단체급식용 닭 가슴살의 품질 개선)

  • Kim Jang-Ho;Jeon Jin-Yong;Ryu Sang-Ryeol;Lee Ju-Woon;Kim Jae-Hun;Oh Sang-Hee;Seo Ji-Hyun;Byun Myung-Woo
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • The storage temperature significantly affected the microbiological quality of the chicken breast In the non-inadiated samples at $30^{\circ}C$, aerobic plate count (APC) and Echerichia coli count of the samples considerably increased during 3 days of storage and were eliminated by an irradiation at dose of 10 kGy or more. The APC and E coli count of the samples stored at $5^{\circ}C$ were reduced to below the limit of detection (< 2 log CFU/g) through the whole storage period by an irradiation at 5 kGy or mote. There was no significant difference in the TBA values between the non-inadiated and inadiated samples, which were not significantly higher in the irradiated samples than the non-inadiated samples during 2 weeks of storage at $5^{\circ}C$. According to the same-different test and acceptance test the sensory quality of the irradiated chicken breast was not significantly different from that of the non-inadiated sample even at 10 kGy. It is found that gamma irradiation is an effective tool to improve the quality of chicken breast in a group-meal service. It was also found that there was no evidence that an irradiation induced mutagenicity in the chicken breast meat.

Dosimetric Effects of Intrafractional Organ Motion in Field-in-Field Technique for Whole-Breast Irradiation

  • Hong, Chae-Seon;Ju, Sang Gyu;Choi, Doo Ho;Han, Youngyih;Huh, Seung Jae;Park, Won;Ahn, Yong Chan;Kim, Jin Sung;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.30 no.3
    • /
    • pp.65-73
    • /
    • 2019
  • Purpose: We evaluated the motion-induced dosimetric effects on the field-in-field (FIF) technique for whole-breast irradiation (WBI) using actual patient organ motion data obtained from cine electronic portal imaging device (cine EPID) images during treatment. Materials and Methods: Ten breast cancer patients who received WBI after breast-conserving surgery were selected. The static FIF (SFIF) plan involved the application of two parallel opposing tangential and boost FIFs. To obtain the amplitude of the internal organ motion during treatment, cine EPID images were acquired five times for each patient. The outside contour of the breast (OCB) and chest wall (CW) contour were tracked using in-house motion analysis software. Intrafractional organ motion was analyzed. The dynamic FIF (DFIF) reflecting intrafractional organ motion incorporated into the SFIF plan was calculated and compared with the SFIF in terms of the dose homogeneity index (DHI90/10) for the target and V20 for the ipsilateral lung. Results: The average motion amplitudes along the X and Y directions were 1.84±1.09 mm and 0.69±0.50 mm for OCB and 1.88±1.07 mm and 1.66±1.49 mm for CW, respectively. The maximum motion amplitudes along the X and Y directions were 5.53 and 2.08 mm for OCB and 5.22 and 6.79 mm for CW, respectively. Significant differences in DHI90/10 values were observed between SFIF and DFIF (0.94 vs 0.95, P<0.05) in statistical analysis. The average V20 for the lung in the DFIF was slightly higher than that of the SFIF in statistical analysis (19.21 vs 19.00, P<0.05). Conclusion: Our findings indicate that the FIF technique can form a safe and effective treatment method for WBI. Regular monitoring using cine EPID images can be effective in reducing motion-induced dosimetric errors.

Clinical Impact of Patient's Head Position in Supraclavicular Irradiation of the Whole Breast Radiotherapy

  • Surega Anbumani;Lohith G. Reddy;Priyadarshini V;Sasikala P;Ramesh S. Bilimagga
    • Progress in Medical Physics
    • /
    • v.34 no.1
    • /
    • pp.10-13
    • /
    • 2023
  • Patients with breast cancer can be positioned with their head turned to the contra lateral side or with their head straight during the radiation therapy treatment set-up. In our hospital, patients with locally advanced breast cancer who were receiving radiation therapy have experienced swallowing difficulty after 2 weeks of irradiation. In this pilot study, the impact of head position on reducing dysphagia occurrence was dosimetrically evaluated. Patients were divided into two groups viz., HT (head turned to the contra lateral side of the breast) and HS (head straight) with 10 members in each. Treatment planning was performed, and the dosimetric parameters such as Dmin, Dmax, Dmean, V5, V10, V20, V30, V40, and V50 of both groups were extracted from the dose volume histogram (DVH) of esophagus. The target coverage in the supraclavicular fossa (SCF) region was analyzed using D95 and D98; moreover, the dose heterogeneity was assessed with D2 from the DVHs. The average values of the dose volume parameters were 27.6%, 58.6%, 35.4%, 19%, 13.8%, 14.1%, 11.8%, 8.4%, and 8.1% higher in the HT group compared with those in the HS group. Furthermore, for the SCF, the mean values of D98, D95, and D2 were 42.4, 47.5, and 54 Gy, respectively, in the HS group and 38.9, 45.35, and 55.5 Gy, respectively, in the HT group. This pilot study attempts to give a solution for the poor quality of life of patients after breast radiotherapy due to dysphagia. The findings confirm that the head position could play a significant role in alleviating esophageal toxicity without compromising tumor control.

Thoracic Irradiation Recruit M2 Macrophage into the Lung, Leading to Pneumonitis and Pulmonary Fibrosis

  • Park, Hae-Ran;Jo, Sung-Kee;Jung, Uhee
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.177-188
    • /
    • 2017
  • Background: Radiation-induced pneumonitis and pulmonary fibrosis are common dose-limiting complications in patients receiving radiotherapy for lung, breast, and lymphoid cancers. In this study, we investigated the characteristics of effective immune cells related to pneumonitis and fibrosis after irradiation. Materials and Methods: After anesthesia, the whole thorax of C57BL/6 mice was irradiated at 14 Gy. The lung tissue and bronchoalveolar lavage fluid were collected at defined time points post-irradiation for the determination of histological and immunohistochemical analysis and inflammatory cell population infiltrated into the lung. Results and Discussion: Whole thoracic irradiation increased the deposition of extracellular matrix (ECM), lung weight, and pleural effusions, which started to die from 4 months later. At 4 months after irradiation, the numbers of macrophages and lymphocytes as well as neutrophils were increased dramatically in the lung. Interestingly, the macrophages that were recruited into the lung after irradiation had an enlarged foamy morphology. In addition, the expressions of chemokines (CCL-2, CCL-3, CXCL-10) for the attraction of macrophages and T cells were higher in the lung of irradiated mice. The high expressions of these chemokines were sustained up to 6 months following irradiation. In thoracic irradiated mice, infiltrated macrophages into the lung had the high levels of Mac-3 antigens on their surface and upregulated the hallmarks of alternatively activated macrophages such as arginase-1 and CD206. Furthermore, the levels of IL-4 and IL-13 were higher in a BAL fluid of irradiated mice. Conclusion: All results show that thoracic irradiation induces to infiltrate various inflammation-related immune cells, especially alternatively activated macrophages, through enhancing the expression of chemokines, suggesting that alternatively activated macrophages are most likely important for leading to pulmonary fibrosis.