• Title/Summary/Keyword: Whole body model

Search Result 248, Processing Time 0.026 seconds

Application of the Detection of External Contamination on Radiation Workers for Bed Type Whole Body Counting Using Monte Carlo Method (몬테카를로 방법을 적용한 bed type 전신계측기의 방사선작업종사자 외부오염 검출 응용)

  • Kim, Jeong-In;Lee, Byoung-Il
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.242-245
    • /
    • 2013
  • Monte Carlo method was applied to discriminate the external contamination on radiation workers in nuclear power plants for internal dose assessment generally used with a bed type scanning detector whole body counter. Korean voxel model with internal contamination was used to estimate the detection patterns of whole body scanning. Also, the BOMAB model with various external contamination was assumed to compare with detection of radionuclides inside the human body. From the comparison of detection efficiency between front and back side up, external contamination was easily distinguished.

Calculation of Effective Half-life of Gamma Emission Radionuclide using Bio-kinetic Model (생체역동학 모델을 이용한 감마선 방출 핵종의 유효반감기 계산)

  • Lee, Sang-Kyung;Jeong, Kyu-Hwan;Lee, Ji-Yon;Kim, Bong-Gi;Kim, Jung-Min
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2018
  • Patients administered radioisotope for medical purposes are regulated by each country to quarantine them until their body's radioactivity contents decrease below release criteria. To predict the quarantine period and provide it to medical staffs and patients, it is necessary to approach the assessment of the exposure dose of persons due to patients in a realistic manner. For this purpose, a whole-body effective half-life should be applied to the dose assessment equation instead of the physical half-life. In this study, we constructed a bio-kinetic model for each nuclear species based on the ICRP publication to obtain a whole-body effective half-life of 10 unsealed gamma-ray emitting nuclei from the notification of Nuclear Safety and Security Commission, and calculated the effective half-life mathematically by simulating the distribution of the radioisotope administered in the whole body as well as each organ scale. The whole-body effective half-life of $^{198}Au$, $^{67}Ga$, $^{123}I$, $^{111}In$, $^{186}Re$, $^{99m}Tc$, and $^{201}TI$ were 1,93, 2.57, 0.295, 2.805, 1.561, 0.245, and 2.397 days respectively. However, it was found to be undesirable to offer a single value of the effective half-life of $^{125}I$, $^{131}I$, and $^{169}Yb$ because the changes in the effective half-life show no linearity. A bio-kinetic model created for the internal exposure assessment has been shown to be possible to calculate the effective half-life of radioisotopes administered in the patient's body, but subsequent studies of radiolabeled compounds are required as well.

A Simulation Model for the protein Deposition of Pigs According to Amino Acid Composition of Feed Proteins (사료의 아미노산 조성에 따른 돼지의 단백질 축적을 나타내는 수치모델)

  • 이옥희;김강성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.178-190
    • /
    • 1999
  • This study was conducted to develop a simulation model for the growth dynamics of pigs and to describe quantitatively protein deposition depending on the amino acid composition of feed protein. In the model it is assumed that the essential processes that determine the utilization of feed protein in the whole body are protein synthesis, breakdown of protein, and oxidation of amino acid. Besides, it is also assumed that occurrence of protein deposition depends on genetic potential and amino acid composition of feed protein. The genetic potential for the protein deposition is the maximum capacity of protein synthesis, being dependent on the protein mass of the whole body. To describe the effect of amino acid composition of feed on the protein deposition, a factor, which consist of ten amino acid functions and lie between 0 and 1, is introduced. Accordingly a model was developed, which is described with 15 flux equations and 11 differential equations and is composed of two compartments. The model describes non linear structure of the protein utilization system of an organism, which is in non steady state. The objective function for the simulation was protein deposition(g/day) cal culated according to the empirical model, PAF(product of amino acid functions) of Menke. The mean of relative difference between the simulated protein deposition and PAF calculated values, lied in a range of 11.8%. The simulated protein synthesis and breakdown rates(g/day) in the whole body showed a parallel behavior in the course of growth.

  • PDF

Simulations using a whole-body biomechanical model

  • ;Freivalds, Andris
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.140-150
    • /
    • 1990
  • Further developments on a dynamic biomechanical model are presented to assess musculoskeletal stresses and human responses. The model being developed is an extension of the Articulated Total Body (ATB) Model, originally developed by Calsapan Corp. for the study of human dynamics during automobile crashes, later adopted to the U.S.Air Force to simulate the reactions of aircrew personnel to such forces typically encountered in various phases of flight operations. Further refinements were introduced by Freivalds and Kaleps(1984) to account for a human neuromusculature. In this study, modelling of active neuromusculature was described and simulations of whole-body human motion were performed using the ATB Model. It indicated the potential of using a muscularized biomechanical model coupled with CAD capabilities to simulate human responses in a variety of industrial settings as well. This will serve as a basis of incorporating computer aided design methods into a muscularized biomechanical models.

  • PDF

Core muscle Strengthening Effect During Spine Stabilization Exercise

  • Han, Kap-Soo;Nam, Hyun Do;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2413-2419
    • /
    • 2015
  • Core spinal muscles are related to trunk stability and assume the main role of stabilizing the spine during daily activities; strengthening of core muscles around the spine can therefore reduce the chance of back pain. The objective of the study was to investigate the effect of core muscle strengthening in the spine during spine stabilization exercise using a whole body tilt device. To achieve this, a validated musculoskeletal (MS) model of the whole body was used to replicate the input motion from the whole body tilting exercise. An inverse dynamics analysis was executed to estimate spine loads and muscle forces depending on the tilting angles of the exercise device. The activation of long and superficial back muscles such as the erector spinae (iliocostalis and longissimus) were mainly affected by the forward direction (-40°) of the tilt, while the front muscles (psoas major, quadratus lumborum, and external and internal obliques) were mainly affected by the backward tilting direction (40°). Deep muscles such as the multifidi and short muscles were activated in most directions of the rotation and tilt. The backward directions of the tilt using this device could be carefully applied for the elderly and for rehabilitation patients who are expected to have less muscle strength. In this study, it was shown that the spine stabilization exercise device can provide considerable muscle exercise effect.

Assesment on the Transformation of Psychological Risk Images due to Development of Flight Skills (조종 숙련도 변화에 따른 심리적 리스크 이미지의 변화에 대한 평가)

  • Kim, Yeong-Gwan;Im, Hyeon-Gyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.57-67
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics. and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person. despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also. when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.

Human-like Whole Body Motion Generation of Humanoid Based on Simplified Human Model (단순인체모델 기반 휴머노이드의 인간형 전신동작 생성)

  • Kim, Chang-Hwan;Kim, Seung-Su;Ra, Syung-Kwon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.287-299
    • /
    • 2008
  • People have expected a humanoid robot to move as naturally as a human being does. The natural movements of humanoid robot may provide people with safer physical services and communicate with persons through motions more correctly. This work presented a methodology to generate the natural motions for a humanoid robot, which are converted from human motion capture data. The methodology produces not only kinematically mapped motions but dynamically mapped ones. The kinematical mapping reflects the human-likeness in the converted motions, while the dynamical mapping could ensure the movement stability of whole body motions of a humanoid robot. The methodology consists of three processes: (a) Human modeling, (b) Kinematic mapping and (c) Dynamic mapping. The human modeling based on optimization gives the ZMP (Zero Moment Point) and COM (Center of Mass) time trajectories of an actor. Those trajectories are modified for a humanoid robot through the kinematic mapping. In addition to modifying the ZMP and COM trajectories, the lower body (pelvis and legs) motion of the actor is then scaled kinematically and converted to the motion available to the humanoid robot considering dynamical aspects. The KIST humanoid robot, Mahru, imitated a dancing motion to evaluate the methodology, showing the good agreement in the motion.

  • PDF

A Physiologically Based Pharmacokinetic Model for Absorption and Distribution of Imatinib in Human Body

  • Chowdhury, Mohammad Mahfuz;Kim, Do-Hyun;Ahn, Jeong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3967-3972
    • /
    • 2011
  • A whole body physiologically based pharmacokinetic (PBPK) model was applied to investigate absorption, distribution, and physiologic variations on pharmacokinetics of imatinib in human body. Previously published pharmacokinetic data of the drug after intravenous (i.v.) infusion and oral administration were simulated by the PBPK model. Oral dose absorption kinetics were analyzed by adopting a compartmental absorption and transit model in gut section. Tissue/plasma partition coefficients of drug after i.v. infusion were also used for oral administration. Sensitivity analysis of the PBPK model was carried out by taking parameters that were commonly subject to variation in human. Drug concentration in adipose tissue was found to be higher than those in other tissues, suggesting that adipose tissue plays a role as a storage tissue for the drug. Variations of metabolism in liver, body weight, and blood/plasma partition coefficient were found to be important factors affecting the plasma concentration profile of drug in human body.

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF

The Effects of Whole Body Vibration in the Aspect of Reducing Abdominal Adipose Tissue in High-Fat Diet Mice Model (고지방 식이 섭취 소동물 모델을 활용한 전신진동 자극의 복부 지방 감소 효능 평가)

  • Hwang, Donghyun;Kim, Seohyun;Lee, Hana;lee, Sangyeob;Seo, Donghyun;Cho, Seungkwan;Chen, Seulgi;Han, Taeyoung;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • The prevalence of obesity has noticeably increased worldwide over several decades with various complication. Even though anti-obesity drug treatments have been spotlighted by resulting in effective mean weight losses, its adverse effects cannot be overlooked. Thus, this study aimed to evaluate the effects of multi-frequency whole body vibration, one of the mechanical stimulus, as a countermeasure against obesity. Thirty-two-6-week-old C57BL/6J male mice were equally assigned to four groups: the Control group (CON, n = 8), the Sham group (Sham, n = 8), the sham with single frequency whole body vibration (S+V, n = 8), and the sham with multi frequency whole body vibration (S+MV, n = 8). After 4 weeks, morphologic changes in the adipose tissue were evaluated from three-dimensional images using in vivo micro-computed tomography. At 4 weeks, the volume of the abdominal adipose tissue, which had the highest value in Sham group, noticeably reduced in S+MV group compared to it in S+V group. These results implied that the accumulation of abdominal adipose tissue can be effectively reduced through applying multi-frequency whole body vibration.