• 제목/요약/키워드: Whole blood exchange transfusion

검색결과 2건 처리시간 0.016초

Exchange Transfusion Treatment for Dapsone-induced Methemoglobinemia

  • ;이장영
    • 대한임상독성학회지
    • /
    • 제6권1호
    • /
    • pp.37-41
    • /
    • 2008
  • Methemoglobinemia can be caused by dapsone toxicity. We report a case dapsone induced methemoglobinemia unresponsive to methylene blue successfully treated by exchange transfusion. A 52-year-old male ingested a handful of dapsone. He presented with severe peripheral cyanosis in lips and fingertips and his methemoglobin level was found to be 21.9%. After admission, methylene blue (1%) at 1 mg/kg was injected each time peripheral cyanosis and rising serum methemoglobin occurred. Despite methylene blue therapy, the patient‘s methemoglobin level continued to fluctuate. Five days after the injections of methylene blue, many Heinz bodies were visualized in the peripheral blood, suggestive of hemolytic anemia occurrence. By hospital day 6, serum methemoglobine levels were elevated and not measurable (> 50%) and the patient was constantly in a semi-comatose mental state. An exchange transfusion carried out by utilizing 6 units of packed red blood cells and 4 units of fresh frozen plasma was performed. The patient's methemoglobin levels were subsequently kept up below 20% and his peripheral cyanosis receded. Physicians should recognize the important role of exchange transfusion in refractory dapsoneinduced methemoglobinemia.

  • PDF

Neonatal indirect hyperbilirubinemia and glucose-6-phosphate dehydrogenase deficiency

  • Isa, Hasan M.;Mohamed, Masooma S.;Mohamed, Afaf M.;Abdulla, Adel;Abdulla, Fuad
    • Clinical and Experimental Pediatrics
    • /
    • 제60권4호
    • /
    • pp.106-111
    • /
    • 2017
  • Purpose: This study aimed to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among infants with neonatal indirect hyperbilirubinemia (NIH); compare G6PD-deficient and G6PD-normal patients regarding hyperbilirubinemia and need for exchange transfusions (ET); and assess risk factors for ET and kernicterus. Methods: This is a case-control retrospective study. Medical records of NIH patients admitted to the Pediatric Department, Salmaniya Medical Complex, Bahrain, between January 2007 and June 2010 were reviewed. Data on sex, age at presentation, hospitalization duration, need for ET, hemoglobin (Hb) level, reticulocyte count, direct Coombs test, serum total and indirect bilirubin levels, thyroid function, blood and urine cultures, G6PD status, and blood groups were collected and compared between the G6PD-deficent and G6PD-normal patients. Results: Of 1,159 NIH patients admitted, 1,129 were included, of whom 646 (57%) were male. Among 1,046 patients tested, 442 (42%) were G6PD deficient, 49 (4%) needed ET, and 11 (1%) had suspected Kernicterus. The G6PD-deficient patients were mainly male (P<0.0001), and had lower Hb levels (P<0.0001) and higher maximum bilirubin levels (P=0.001). More G6PD-deficient patients needed ET (P<0.0001). G6PD deficiency (P=0.006), lower Hb level (P=0.002), lower hematocrit count (P=0.02), higher bilirubin level (P<0.0001), higher maximal bilirubin level (P<0.0001), and positive blood culture result (P<0.0001) were significant risk factors for ET. Maximal bilirubin level was a significant risk factor for kernicterus (P=0.021) and independently related to ET (P=0.03). Conclusion: G6PD deficiency is an important risk factor for severe NIH. In G6PD-deficent neonates, management of NIH should be hastened to avoid irreversible neurological complications.