• Title/Summary/Keyword: White-light-emitting OLED

Search Result 76, Processing Time 0.034 seconds

The Characteristic Analysis of White Organic Light Emitting Diodes with Two-wavelength Materials at Emitting Layer (발광층에 2파장 재료를 갖는 백색 유기발광소자의 특성분석)

  • Kang, Myung-Koo;Shim, Ju-Yong;Oh, Hwan-Sool
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, the white organic LED with two-wavelength was fabricated using the NPB of blue emitting material and a series of orange color fluorescent dye(Rubrene) by vacuum evaporation processes. The structure of white OLED was ITO/NPB$(200{\AA})$NPB:Rubrene$(300{\AA})$/BCP$(100{\AA})/Alq_3(100{\AA})/Al(1000{\AA})$ and the doping concentration of Rubrene was 0.75 wt%. We obtained the white OLED with CIE color coordinates were x=0.3327 and y=0.3387, and the maximum EL wavelength of the fabricated white organic light-emitting device was 560 nm at applied voltage of 11 V, which was similar to NTSC white color with CIE color coordinates of x=0.3333 and y=0.3333. The turn-on voltage is 1 V, the light-emitting him-on voltage is 4 V. We were able to obtain an excellent maximum external quantum efficiency of 0.457 % at an applied voltage of 18.5 V and current density of $369mA/cm^2$.

Emission Characteristics of White Organic Light-Emitting Diodes Using Micro Lens Array Film (Micro Lens Array Film을 이용한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.93-97
    • /
    • 2013
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with co-doping and blue/co-doping emitting layer (EML) structures were fabricated using a host-dopant system. The total thickness of light-emitting layer was 25 nm and the dopant of blue and red was FIrpic and $Bt_2Ir(acac)$ in UGH3, respectively. In case of co-doping structure, applying micro lens array film showed efficiency improvement from the current efficiency 78.5 cd/A and power efficiency 40.4 lm/W to the current efficiency 131.1 cd/A and power efficiency 65 lm/W and blue / co-doping structure showed efficiency improvement from the current efficiency 43.8 cd/A and power efficiency 22 lm/W to the current efficiency 69 cd/A and power efficiency 32 lm/W.

Optical and electrical characteristics of White OLEDs (White OLEDs의 전기 및 광학적 특성 평가)

  • Hwang, Sun-Pil;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.25-26
    • /
    • 2008
  • In this paper, the white organic light-emitting diode(OLED)was fabricated using the DPVBi of blue emitting material and a rubrene of orange color of fluorescent dye by vacuum evaporation processes. The device structure of OLED was Glass/ITO/2T-NATA(15nm)/NPB(3nm)/DPVBi(3nm)/DPVBi rubrene[2%](10nm)/DPVBi(25nm)/$Alq_3$ or New-ETL(60nm) /LiF(0.5nm)/ Al(100nm). The device with the $Alq_3$, layer shows orange color, and the luminance of 1000cd/$m^2$ at an applied voltage of 10.4V. On the other hand, the New-En layer results in white color, CIE coordinates of (0.327, 0.323), and the lowered driving voltage of 5V for achieving the same luminance value.

  • PDF

Effects of BCP Electron Transport Layer Thickness on the Efficiency and Emission Characteristics of White Organic Light-Emitting Diodes (BCP 전자수송층 두께가 백색 OLED의 효율 및 발광 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • We have fabricated white organic light-emitting diodes (OLEDs) using several thicknesses of electron-transport layer. The multi-emission layer structure doped with red and blue phosphorescent guest emitters was used for achieving white emission. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as an electron-transport layer. The thickness of BCP layer was varied to be 20, 55, and 120 nm. The current efficiency, emission and recombination characteristics of multi-layer white OLEDs were investigated. The BCP layer thickness variation results in the shift of emission spectrum due to the recombination zone shift. As the BCP layer thickness increases, the recombination zone shifts toward the electron-transport layer/emission-layer interface. The white OLED with a 55 nm thick BCP layer exhibited a maximum current efficiency of 40.9 cd/A.

Low Voltage Driving White OLED with New Electron Transport Layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.252-256
    • /
    • 2009
  • We have developed low driving voltage white organic light emitting diode with a new electron transport material, triphenylphosphine oxide ($Ph_{3}PO$). The white light emission was realized with a rubrene yellow dopant and blue-emitting DPVBi layer. The new electron transport layer results in a very high current density at low voltage, resulting in a reduction of driving voltage. The device with a new electron transport layer shows a brightness of $1150\;cd/m^2$ at a low driving voltage of 4.3 V.

New approaches towards highly efficient OLED

  • Reineke, S.;Meerheim, R.;Huang, Q.;Schwartz, G.;Lussem, B.;Leo, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1216-1219
    • /
    • 2009
  • Recently,electroluminescence devices based on organic semiconductors have made considerable progress. Displays based on organic light emitting diodes (OLED) are commercially available. To gain broader acceptance, the performance of OLED devices has to be further improved, in particular for lighting. This article discusses the possibility to use controlled electrical doping for improving the properties of devices and new approaches for highly efficient white OLED.

  • PDF

Low voltage driving white OLED with new electron transport layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Kim, Tae-Yong;Suh, Won-Kyu;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF

Simplified Bilayer White Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jonghee;Sung, Woo Jin;Joo, Chul Woong;Cho, Hyunsu;Cho, Namsung;Lee, Ga-Won;Hwang, Do-Hoon;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.260-264
    • /
    • 2016
  • We report on highly efficient blue, orange, and white phosphorescent organic light-emitting diodes consisting only two organic layers. Hole transporting 4, 4,' 4"-tris (N-carbazolyl)triphenylamine (TcTa) and electron transporting 2-(diphenylphosphoryl) spirofluorene (SPPO1) are used as an emitting host for orange light-emitting bis(3-benzothiazol-2-yl-9-ethyl-9H-carbazolato) (acetoacetonate) iridium ((btc)2(acac)Ir) and blue light-emitting iridium(III)bis(4,6-difluorophenyl-pyridinato-N,C2') picolinate (FIrpic) dopant, respectively. Combining these two orange and blue light-emitting layers, we successfully demonstrate highly efficient white PHOLEDs while maintaining Commission internationale de l'eclairage coordinates of (x = 0.373, y = 0.443). Accordingly, we achieve a maximum external quantum, current, and power efficiencies of 12.9%, 30.3 cd/A, and 30.0 lm/W without out-coupling enhancement.

Fabrication of a White Organic Light Emitting Diode By Synthesizing a Novel Non-conjugated Blue Emitting Material PPPMA-co-DTPM Copolymer (신규 비공액성 청색발광재료 PPPMA-co-DTPM 공중합체 합성을 통한 백색유기발광소자 제작)

  • Cho, Jae-Young;Oh, Hwan-Sool;Kim, Tae-Gu;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.641-646
    • /
    • 2005
  • To fabricate a single layer white organic light emitting diode (OLED), a novel non-conjugated blue emitting material PPPMA-co-DTPM copolymer was synthesized containing a perylene moiety unit with hole transporting and blue emitting ability and a triazine moiety unit with electron transporting ability. The devices were fabricated using PPPMA-co-DTPM $(PPPMA[70\;wt\%]:DTPM[30\;wt\%])$ copolymer by varying the doping concentrations of each red, green and blue fluorescent dye, by molecular-dispersing into Toluene solvent with spin coating method. In case of ITO/PPPMA-co-DTPM:TPB$(3\;mol\%):C6(0.04\;mol\%):NR(0.015\;mol\%)/Al$ structure, as they were molecular-dispersing into 30 mg/ml Toluene solvent, nearly-pure white light was obtained both (0.325, 0.339) in the CIE coordinates at 18 V and (0.335, 0.345) at 15 V. The turn-on voltage was 3 V, the light-emitting turn-on voltage was 4 V, and the maximum external quantum efficiency was $0.667\%$ at 24.5 V. Also, in case of using 40 mg/ml Toluene solvent, the CIE coordinate was (0.345, 0.342) at 20 V.