• Title/Summary/Keyword: White-Light Interferometry

Search Result 63, Processing Time 0.045 seconds

A curvature profilometry using white-light (백색광을 이용한 곡률 측정법 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.81-86
    • /
    • 2008
  • I present a 3-D profiler specially devised for the profile measurement of specular surfaces that requires precision shape accuracy up to a few nanometer. A profile is reconstructed from the curvature of a test part of the surface at several locations along a line. The local curvature data are acquired with White-light Scanning Interferometry. Test measurement proves that the proposed profiler is well suited for the specular surface inspection like precision mirror.

  • PDF

Unequal-path Low-coherence Interferometry Using Femtosecond Pulse Lasers (펨토초 레이저를 이용한 비동일 광경로 저결맞음 간섭계)

  • Oh J.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.204-207
    • /
    • 2005
  • We discuss two possibilities of using femtosecond pulse lasers as a new interferometric light source fer enhanced precision surface profile metrology. First, a train of ultra-fast laser pulses yields repeated low temporal coherence, which allows performing unequal-path scanning interferometry that is not feasible with white light. Second, high spatial coherence of femtosecond pulse lasers enables to test large size optics in non-symmetric configurations with relatively small size reference surfaces. These two advantages are verified experimentally using Fizeau and Twyman-Green type scanning interferometers.

  • PDF

Self-compensation of the phase change upon reflection in two-wavelength white light interferometry for step height measurement (두 파장 백색광 간섭계를 이용한 금속물질의 단차 측정)

  • 김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.317-322
    • /
    • 2000
  • We present a compensation method of the phase change upon reflection in the scannll1g whIte light interferometry. which pracl1cally allows precIse 3-D profIle mappmg for compo~Ite target surfaces comprising of multipledissinular matenals. The compensation method estimates the vanatlon 01 pbase change with the spectral distribution of the light source through first-order approximation, and then diIectly compensates the measurement errors by perIormmg two-wavelength white light intetferomctric measurements. Experimental results prove that the proposed self-compensatIOn mcthod is capable of reducing the measmement error in step height gauging within $\pm2nm$..

  • PDF

Dispersive white-light interferometry using polarization of light for thin-film thickness profile measurement (편광분리 분산 분산형 백색광 간섭계를 이용한 박막두께형상측정법)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.565-568
    • /
    • 2005
  • We describe a new scheme of dispersive white-light interferometer that is capable of measuring the thickness profile of thin-film layers, for which not only the top surface height profile but also the film thickness of the target surface should be measured at the same time. The interferometer is found useful particularly for in-situ inspection of micro-engineered surfaces such as liquid crystal displays, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Development of Elimination Method of Measurement noise to Improve accuracy for White Light Interferometry (백색광 간섭계의 정밀도 향상을 위한 노이즈 제거 방법)

  • Ko, Kuk-Won;Cho, Soo-Yong;Kim, Min-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.519-522
    • /
    • 2008
  • As industry of a semiconductor and LCD industry have been rapidly growing, precision technologies of machining such as etching and 3D measurement are required. Stylus has been important measuring method in traditional manufacturing process. However, its disadvantages are low measuring speed and damage possibility at contacting point. To overcome mentioned disadvantage, non-contacting measurement method is needed such as PMP(Phase Measuring Profilometry), WSI(white scanning interferometer) and Confocal Profilometry. Among above 3 well-known methods, WSI started to be applied to FPD(flat panel display) manufacturing process. Even though it overcomes 21t ambiguity of PMP method and can measure objects which has specular surface, the measuring speed and vibration coming from manufacturing machine are one of main issue to apply full automatic total inspection. In this study, We develop high speed WSI system and algorithm to reduce unknown noise. The developing WSI and algorithm are implemented to measure 3D surface of wafer. Experimental results revealed that the proposed system and algorithm are able to measure 3D surface profile of wafer with a good precision and high speed.

Measurement Method of Height of White Light Scanning Interferometer using Deep Learning (Deep Learning을 사용한 백색광 주사 간섭계의 높이 측정 방법)

  • Baek, Sang Hyune;Hwang, Wonjun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.864-875
    • /
    • 2018
  • In this paper, we propose a measurement method for height of white light scanning interferometer using deep learning. In order to measure the fine surface shape, a three-dimensional surface shape measurement technique is required. A typical example is a white light scanning interferometer. In order to calculate the surface shape from the measurement image of the white light scanning interferometer, the height of each pixel must be calculated. In this paper, we propose a neural network for height calculation and use virtual data generation method to train this neural network. The accuracy was measured by inputting 57 actual data to the neural network which had completed the learning. We propose two new functions for accuracy measurement. We have analyzed the cases where there are many errors among the accuracy calculation values, and it is confirmed that there are many errors when there is no interference fringe or outside the learned range. We confirmed that the proposed neural network works correctly in most cases. We expect better results if we improve the way we generate learning data.