• Title/Summary/Keyword: White ultra-small materials

Search Result 3, Processing Time 0.017 seconds

Identification of the Materials of the Decorative Pieces Excavated from Geumnyeongchong Tomb (금령총 출토 장식편 재질 규명)

  • Lee Gyuhye;Shin Seungchul;Gwak Hongin;Yang Seokjin
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.89-100
    • /
    • 2023
  • Museum collections are comprised of a variety of materials, and different scientific examinations are being conducted according to the types and production properties of the materials, but insufficient research has been carried out on ultra-small artifacts. To identify the material characteristics of the white ultra-small materials excavated from Geumnyeongchong tomb, this study carried out a wide range of non-destructive analyses (specific gravity, microscopy, nano-computed tomography (Nano-CT), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Raman spectroscopy) and compared the said artifacts with the Goryeo-era burial accessories examined in prior research. Non-destructive analysis confirmed the presence of aragonite, which mainly consists of calcium carbonate (CaCO3) as the constituent mineral, and identified the material used for the ornaments as the gemstone pearl based on its growth lines. This study concludes that pearls began to be used in the ancient Korean Peninsula in the 6th century. It is expected that scientific examinations of the white ultra-small artifacts will yield information about the social culture of the time.

An essay on the Korean early oil painting of self-portrait in the museum of Tokyo National Univerity of Fine Arts and Music (초기 한국 유화의 과학적 조사-동경예술대학 예술자료관 소장 유화 자화상을 중심으로)

  • Kim, Jee-Hee
    • 보존과학연구
    • /
    • s.15
    • /
    • pp.59-103
    • /
    • 1994
  • Painting is well regarded as a stratified structure by the conservators and restorers. Hence, the scientific methods have been developed for the study of the interal layer of paintings. Examples of such methods are X-ray, infra-red, and ultra-violet photography. A more direct method is to look at the painting in cross section under the microscope and to analyze pigments using an electron probe X-ray micro analyzer(EPMA).In this research, I study and analyze twenty two Korean paintings of self-portraits including the first oil painting of Hui Dong Koh's self-portrait stored in the museum of Tokyo National University of Fine Arts and Music, employing these scientific techniques. The small fragments taken from the ground layers of the early oil paintings(1915∼1942)are analyzed using the EPMA. According to their main materials, the ground layers can be classified into five types ; 1. Lead white layer and double layer of calcium carbonate and lead white, 2. Zinc white with some mixiture of lead white, 3.Titanium white with some barium white, 4. Barium white, 5.Double layer of titanium white and zinc white.

  • PDF

Development of Portable Laryngeal Stroboscope (휴대형 후두 스트로보스콥의 개발)

  • Lee, Jae-Woo;Kwon, Soon-Bok;Lee, Byung-Joo;Lee, Jin-Choon;Goh, Eui-Kyung;Chon, Kyong-Myong;Wang, Soo-Geun;Ro, Jung-Hoon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Purpose: Evaluation of vocal cord vibration is very important in cases of voice disorders. There are several equipments for examining the vocal fold vibration such as laryngeal stroboscope, ultra high-speed digital imaging system, and videokymograph. Among these, laryngeal stroboscope is the most popular equipment because of easy to examine the laryngeal pathology. However, current laryngo-stroboscopes are too bulky to move and relatively expensive. The purpose of this research is to develope a portable laryngeal stroboscope of equivalent performance with the current equipments. Methods and Materials: Recently developed high luminescent white LEDs(light emitting diodes) are placed at the head of the endoscope as light sources for the CCD image sensor which is also placed at the head with imaging lens. This arrangement eliminates the bulky light source like expensive halogen or xenon lamps as well as the optical light guiding cables. The LEDs are controlled to flash in phase with the voice frequency of the examinee. The CCD captures these strobo images and converts them into video signals for examinations. Results: There was no functional differences between preexisting stroboscope and the newly developed stroboscope of this study. LED light sources and microprocessor based control circuits of the stroboscope enabled the development of flicker-less, hand-held, portable and battery-operating stroboscope. Conclusion: The developed stroboscope is cost-effective, small-sized, easy to use and very easy desirable to bring and to use in any place.

  • PDF