• Title/Summary/Keyword: White muscle

Search Result 281, Processing Time 0.02 seconds

Uterine Leiomyosarcoma in a Dog (개에서 자궁 평활근육종의 발생례)

  • Kwon, Jean;Cho, Jong-Ki;Ahn, Gook-Jun;Goo, Ja-Min;Kim, Dae-Yong;Lee, Byeong-Chun;Hwang, Woo-Suk
    • Journal of Veterinary Clinics
    • /
    • v.17 no.2
    • /
    • pp.495-498
    • /
    • 2000
  • Leiomyosarcoma is defined as a malignant smooth muscle tumor or a tumor that arises from smooth muscle and it is found as firm. white and lobulated mass. Canine uterine Ieiomyosa- rcomas are rarely associated with clinical signs. We surveyed(one case which was treated at veter- inary medical leaching hospital of Seoul National University. Through this report we studied the meshed fur diagnosis of uterine leiomyosarcoma by symptom, hematological method and ultrahonog- raphy. To determine uterine leiomysarcoma is difficult due to similarity of clinical signs to pyometra. Especially symptoms could not be noticed even by dogs owners until dogs have an elevation of the number of white blood cells. We conclude ultrasonographic observation and experimental laparotomy are of great value to diagnose the uterine liomyosarcoma.

  • PDF

The Effects of A High-Fat Diet on Pro- and Macro-Glycogen Accumulation and Mobilization During Exercise in Different Muscle Fiber Types and Tissues in Rats

  • Lee Jong-Sam;Eo Su-Ju;Cho In-Ho;Pyo Jae-Hwan;Kim Hyo-Sik;Lee Jang-Kyu;Kwon Young-Woo;Kim Chang-Keun
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2005
  • We investigated the effects of diet manipulation on pro- and macro-glycogen accumulation and mobilization during exercise in different kinds of muscle fiber and tissue. Thirty-two Sprague-Dawley rats were divided into groups representing one of two dietary conditions: high fat (HF, n=16) or standard chow (CHOW, n=16). Each dietary group was fm1her divided into control (REST, n=8) and exercise (EXE, n=8). After an eight-week dietary intervention period, the animals in EXE swam for 3 hours while the animals in REST remained at rest Skeletal muscle (soleus, red gastrocnemius and white gastrocnemius) and liver samples were then dissected out and used for analyses. 1here was no statistical difference in body weight between the animals in the HF and mow groups (p>.05). Three hours of exercise significantly increased plasma free fatty acid (FFA) concentration in the animals in the CHOW group but not in the animals in the HF group. Both citrate. synthase (CS) and $\beta$-hydroxyacyl dehydrogenase ($\beta$-HAD) activities in skeletal muscles were higher in the HF group than in the mow group. CS and $\beta$-HAD activities were also the highest in red gastrocnemius and the lowest in white gastrocnemius. At both time points (i.e., rest and immediately after exercise) intramuscular triglyceride (IMTG) and liver TG concentrations were significantly higher in the HF compared to the CHOW. IMTG and liver TG changed selectively in the CHOW. Except in white gastrocnemius muscle, there was no significant difference in total glycogen content between HF and mow at rest. Although exercise significantly lowered total glycogen content in all groups and tissues (p<.05), the degree of reduction was markedly greater in the mow than in the HF. Whereas changes in proglycogen concentration showed a trend similar to those of total glycogen, alterations in macroglycogen concentrations clearly differed from those of total glycogen. Specifically, the degree of reduction of macroglycogen following three hours of exercise was substantially greater in the CHOW than in the HF. These results suggest that metabolic alterations induced by a long-term high fat diet may be caused by macro-glycogen rather than pro-glycogen.

Influence of freeze-thawed cycles on pork quality

  • Tippala, Tiprawee;Koomkrong, Nunyarat;Kayan, Autchara
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1375-1381
    • /
    • 2021
  • Objective: This study was conducted to determine the effect of freeze-thawed cycles (Fresh meat, F-T 1 cycle and F-T 2 cycles) on the quality characteristics of porcine longissimus dorsi muscle. Methods: A total of 20 three-crossbred pigs (Duroc×[Large White×Landrace]) were randomly obtained from a commercial slaughterhouse in Thailand. Muscle samples were immediately taken from 10 to 11th of the longissimus dorsi for histochemical analysis. The muscles were cut into 2.54 cm-thick chops. A minimum of 20 chops were used for each treatment (fresh meat, freeze-thawed 1 and 2 cycles). Individually chops were packaged in polyethylene bags and frozen at -20℃ for 6 months followed by thawing in refrigerator at 4℃ for 24 h (the 1st freeze-thawed cycle). The freeze-thawed procedure was repeated for two cycles (the 2nd freeze-thawed cycle). Thawing loss, shear force value, citrate synthase activity and muscle fiber characteristics were determined on the muscles. Results: Results showed that increasing of freeze-thawed cycle increased the thawing loss (p<0.01) and citrate synthase activity (p<0.001). Shear force value of fresh meat was higher than freeze-thawed 1 and 2 cycles (F-T 1 cycle and F-T 2 cycles). Freeze-thawed cycles affected muscle characteristics. Muscle fiber area and muscle fiber diameter decreased with an increasing number of freeze-thawed cycles (p<0.001), while the thickness of endomysium and perimysium were increased (p<0.001). Conclusion: Repeated freeze-thawed cycles degraded muscle fiber structure and deteriorated pork quality.

Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice

  • Jin, Heegu;Oh, Hyun-Ji;Nah, Seung-Yeol;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.454-463
    • /
    • 2022
  • Background: Gintonin-enriched fraction (GEF), a non-saponin fraction of ginseng, is a novel glycolipoprotein rich in hydrophobic amino acids. GEF has recently been shown to regulate lipid metabolism and browning in adipocytes; however, the mechanisms underlying its effects on energy metabolism and whether it affects sarcopenic obesity are unclear. We aimed to evaluate the effects of GEF on skeletal muscle atrophy in high-fat diet (HFD)-induced obese mice. Methods: To examine the effect of GEF on sarcopenic obesity, 4-week-old male ICR mice were used. The mice were divided into four groups: chow diet (CD), HFD, HFD supplemented with 50 mg/kg/day GEF, or 150 mg/kg/day GEF for 6 weeks. We analyzed body mass gain and grip strength, histological staining, western blot analysis, and immunofluorescence to quantify changes in sarcopenic obesity-related factors. Results: GEF inhibited body mass gain while HFD-fed mice gained 22.7 ± 2.0 g, whereas GEF-treated mice gained 14.3 ± 1.2 g for GEF50 and 11.8 ± 1.6 g for GEF150 by downregulating adipogenesis and inducing lipolysis and browning in white adipose tissue (WAT). GEF also enhanced mitochondrial biogenesis threefold in skeletal muscle. Furthermore, GEF-treated skeletal muscle exhibited decreased expression of muscle-specific atrophic genes, and promoted myogenic differentiation and increased muscle mass and strength in a dose-dependent manner (p < 0.05). Conclusion: These findings indicate that GEF may have potential uses in preventing sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy.

MICROSCOPIC OBSERVATIONS OF FAT TRANSLOCATION IN THE TISSUE OF YELLOW CORVENIA DURING SALTING AND DRYING ("굴비" 제조과정중의 지방의 이동에 대한 조직학적 관찰)

  • PYEUN Jae-Hyeung;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.63-71
    • /
    • 1968
  • Salted and dried yellow corvenia(Pseudosciaena manchurica), so called 'Gul-bi', is one of nation-widely consuming fish foo::ls. It is suitable for a long term preservation and its pro-duce is also a great deal on sea food processing in this country. The texture of 'Gul-bi', however, have often appeared to be a delicate factor for the quality of the product. The loss or dislocation of fat in the tissue of the fish resulted by salting and drying is believed to profoundly relate to the texture of product. In this paper, the tissue of yellow corvenia and movement of fat were microscopically observed before salting, immediately after salting, and after drying and the results observed in the tissues dry salted, brine salted, and brine salted with the addition of BHA were compared. The cross section of yellow corvenia muscle showed that a distinctive border by connective tissue between white and red muscle could not be seen in general, and red muscle was surrounded by hypodermic fatty tissues. In the tissue of fresh yellow corvenia, the fat was mainly distributed in hypodermic fat layer which located under the corium while rarely distributed in white muscle. It was found that some parts of the fat in the tissue were permeated into intermuscular tissue passing through the connective tissues during salting. The result Was the same in both dry-salting and brine-salting tissue. However, the fat translocated into intermuscular tissues disappeared during drying process in the salted without BHA tissues whereas in BHA added tissue. This result suggested that BHA may take a role of multiple effect in translocation of fat in tissues as well as in retarding oxidation. In an advanced stage of salted and dehydration, the muscle fibers were ajoined together and then limits between muscle fibers already became indistinguishable. And the migrated fat into intermuscular tissue aggregated around the connective tissue and are apt to gradually to flow out from the muscular system through these tissues.

  • PDF

Activity Screening of the Proteolytic Enzymes Responsible for Post-mortem Degradation of Fish Tissues (어류의 사후 변화에 관여하는 단백질분해효소의 검색)

  • PYEUN Jae-Hyeung;LEE Dong-Soo;KIM Doo-Sang;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.296-308
    • /
    • 1996
  • Proteolytic enzymes responsible for post-mortem degradation of the fish tissues have been studied in regard with screening the proteases distributed in the fish body by reacting with the specific synthesized substrates. Activities of cathepsin L, B, H, G, and D like enzymes were detected in the muscle crude protease from the both kind of fish, dark fleshed fish (anchovy, Engraulis japonica, and gizzard-shad, Clupanodo punctatus) and white fleshed fish (seabass, Lateolabrax japonicus, and sole, Pleuronichthys cornutus), however, those of chymotrypsin, trypsin, pepsin, and peptidase like enzymes were observed 3n the viscera crude pretense from the fish. Proteolytic activities of the muscle crude protease at pH 6.0 were similar to those of the viscera crude protease at pH 8.0, but, those of the viscera crude protease at pH 8.0 were about 2 times higher than those at pH 6.0. The muscle and viscera crude protease from anchovy showed the strongest proteolytic activity among the four fish crude proteases and the proteolytic activity of the viscera crude protease was approximately 100 times higher than that of the muscle crude protease, which suggest that viscera proteases were more contributed on the development of post-mortem changes than muscle proteases. With the degradation patterns on SDS-polyacrylamide gel electrophoresis against yellowtail myofibrillar proteins, the muscle and viscera crude protease of the four fishes were primary responsible for the degradation of myosin heavy chain, and myosin light chain and actin, respectively.

  • PDF

Demographic and Survivorship Disparities in Non-muscle-invasive Bladder Cancer in the United States

  • Seo, Munseok;Langabeer, James R. II
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.5
    • /
    • pp.242-247
    • /
    • 2018
  • Objectives: To examine survivorship disparities in demographic factors and risk status for non-muscle-invasive bladder cancer (NMIBC), which accounts for more than 75% of all urinary bladder cancers, but is highly curable with early identification and treatment. Methods: We used the US National Cancer Institute's Surveillance, Epidemiology, and End Results registries over a 19-year period (1988-2006) to examine survivorship disparities in age, sex, race/ethnicity, and marital status of patients and risk status classified by histologic grade, stage, size of tumor, and number of multiple primary tumors among NMIBC patients (n=29 326). We applied Kaplan-Meier (K-M) and Cox proportional hazard methods for survival analysis. Results: Among all urinary bladder cancer patients, the majority of NMIBCs were in male (74.1%), non-Latino white (86.7%), married (67.8%), and low-risk (37.6%) to intermediate-risk (44.8%) patients. The mean age was 68 years. Survivorship (in median life years) was highest for non-Latino white (5.4 years), married (5.4 years), and low-risk (5.7 years) patients (K-M analysis, p<0.001). We found significantly lower survivorship for elderly, male (female hazard ratio [HR], 0.96), Latino (HR, 1.20), and unmarried (married HR, 0.93) patients. Conclusions: Survivorship disparities were ubiquitous across age, sex, race/ethnicity, and marital status groups. Non-white, unmarried, and elderly patients had significantly shorter survivorship. The implications of these findings include the need for a heightened focus on health policy and more organized efforts to improve access to care in order to increase the chances of survival for all patients.

Changes in Reproductive Function and White Blood Cell Proliferation Induced in Mice by Injection of a Prolactin-expressing Plasmid into Muscle

  • Lee, Jung-Sun;Yun, Bo-Young;Kim, Sang-Soo;Cho, Chunghee;Yoon, Yong-Dal;Cho, Byung-Nam
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.189-197
    • /
    • 2006
  • Prolactin (PRL) is a pituitary hormone involved in various physiological processes, including lactation, mammary development, and immune function. To further investigate the in vivo and comparative endocrine roles of PRL, mouse PRL cDNA fused to the cytomegalovirus promoter, was introduced into muscle by direct injection. Previously we studied the function of rat PRL using the same protocol. PRL mRNA was detected in the muscle following injection by RT-PCR and subsequent Southern blot analysis. PRL was also detected and Western blot analysis revealed a relatively high level of serum PRL. In the pCMV-mPRL-injected female mice, the estrous cycle was extended, especially in diestrus stage and the uterus thickening that was shown in normal estrous stage was not observed. In the pCMV-mPRL-injected male mice, new blood vessels were first found at 5 weeks of age and fully developed blood vessels were found after 8 weeks in the testis. The number of Leydig cells increased within the testis and the testosterone level in serum was observed high. Finally, the number of white blood cells (WBCs) increased in the pCMV-mPRL-injected mice. The augmentation of WBCs persisted for at least 20 days after injection. When injection was combined with adrenalectomy, there was an even greater increase in number of WBCs, especially lymphocytes. This increase was returned normal by treatment with dexamethansone. Taken together, our data reveal that intramuscularly expressed mouse PRL influences reproductive functions in female, induces formation of new blood vessels in the testis, and augments WBC numbers. Of notice is that the Leydig cell proliferation with increased testosterone was conspicuously observed in the pCMV-mPRL-injected mice. These results also suggest subtle difference in function of PRL between mouse and rat species.

[Retraction] A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus

  • Gizaw, Mamo;Anandakumar, Pandi;Debela, Tolessa
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.235-242
    • /
    • 2017
  • Irisin is a novel hormone like polypeptide that is cleaved and secreted by an unknown protease from fibronectin type III domain-containing protein 5 (FNDC5), a membrane-spanning protein and which is highly expressed in skeletal muscle, heart, adipose tissue, and liver. Since its discovery in 2012, it has been the subject of many researches due to its potent physiological role. It is believed that understanding irisin's function may be the key to comprehend many diseases and their development. Irisin is a myokine that leads to increased energy expenditure by stimulating the 'browning' of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Irisin is a powerful messenger, sending the signal to determine the function of specific cells, like skeletal muscle, liver, pancreas, heart, fat and the brain. The action of irisin on different targeted tissues or organs in human being has revealed its physiological functions for promoting health or executing the regulation of variety of metabolic diseases. Numerous studies focus on the association of irisin with metabolic diseases which has gained great interest as a potential new target to combat type 2 diabetes mellitus and insulin resistance. Irisin is found to improve insulin resistance and type 2 diabetes by increasing sensitization of the insulin receptor in skeletal muscle and heart by improving hepatic glucose and lipid metabolism, promoting pancreatic ${\beta}$ cell functions, and transforming white adipose tissue to brown adipose tissue. This review is a thoughtful attempt to summarize the current knowledge of irisin and its effective role in mediating metabolic dysfunctions in insulin resistance and type 2 diabetes mellitus.

Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig

  • Gao, Pengfei;Cheng, Zhimin;Li, Meng;Zhang, Ningfang;Le, Baoyu;Zhang, Wanfeng;Song, Pengkang;Guo, Xiaohong;Li, Bugao;Cao, Guoqing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1084-1094
    • /
    • 2019
  • Objective: The aim of this study was to select the candidate genes affecting meat quality and preliminarily explore the related molecular mechanisms in the Mashen pig. Methods: The present study explored genetic factors affecting meat quality in the Mashen pig using RNA sequencing (RNA-Seq). We sequenced the transcriptomes of 180-day-old Mashen and Large White pigs using longissimus dorsi to select differentially expressed genes (DEGs). Results: The results indicated that a total of 425 genes were differentially expressed between Mashen and Large White pigs. A gene ontology enrichment analysis revealed that DEGs were mainly enriched for biological processes associated with metabolism and muscle development, while a Kyoto encyclopedia of genes and genomes analysis showed that DEGs mainly participated in signaling pathways associated with amino acid metabolism, fatty acid metabolism, and skeletal muscle differentiation. A MCODE analysis of the protein-protein interaction network indicated that the four identified subsets of genes were mainly associated with translational initiation, skeletal muscle differentiation, amino acid metabolism, and oxidative phosphorylation pathways. Conclusion: Based on the analysis results, we selected glutamic-oxaloacetic transaminase 1, malate dehydrogenase 1, pyruvate dehydrogenase 1, pyruvate dehydrogenase kinase 4, and activator protein-1 as candidate genes affecting meat quality in pigs. A discussion of the related molecular mechanisms is provided to offer a theoretical basis for future studies on the improvement of meat quality in pigs.