• Title/Summary/Keyword: White matter integrity

Search Result 15, Processing Time 0.03 seconds

Effects of the Combination Herbal Extract on Working Memory and White Matter Integrity in Healthy Individuals with Subjective Memory Complaints : A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

  • Kwon, Oran;Lee, Sunho;Ban, Soonhyun;Im, Jooyeon J.;Lee, Doo Suk;Lee, Eun Hee;Kim, Joohee;Lim, Soo Mee;Lee, Sang Gon;Kang, Ilhyang;Kim, Kyung-Hee;Yoon, Sujung;Lee, Sun Hea
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.63-77
    • /
    • 2015
  • Objectives The combination extract of four kinds of herbs, Gastrodia elata, Liriope platyphylla, Dimocarpus longan, and Salvia miltiorrhiza, has shown to have memory improving effects in mice. The aim of this study was to investigate the efficacy and safety of the herbal mixture for improving working memory as well as microstructural changes in white matter integrity in individuals with subjective memory complaints. Methods Seventy-five individuals with subjective memory complaints were assigned to receive either placebo (n = 15) or herbal mixture (low-dose group, n = 30 and high-dose group, n = 30) supplementation in an 8-week, randomized, double-blind, placebo-controlled clinical trial. Changes in working memory performance and fractional anisotropy (FA) values reflecting white matter integrity from baseline to 8-week endpoint were assessed. Results The herbal mixture group showed an increase in working memory performance compared to the placebo group (p for interaction = 0.001). In addition, the herbal mixture group showed an increase in FA values in the temporo-parietal regions (corrected p < 0.05), which are crucially involved in working memory function and are among the most affected regions in patients with cognitive impairments. Conclusions Findings from this study indicate that the herbal mixture may be a promising therapeutic option for individuals with subjective memory complaints.

Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury

  • Yang, Fan;Li, Ya;Sheng, Xun;Liu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.97-109
    • /
    • 2021
  • Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague-Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.

Increased white matter diffusivity associated with phantom limb pain

  • Seo, Cheong Hoon;Park, Chang-hyun;Jung, Myung Hun;Baek, Seungki;Song, Jimin;Cha, Eunsil;Ohn, Suk Hoon
    • The Korean Journal of Pain
    • /
    • v.32 no.4
    • /
    • pp.271-279
    • /
    • 2019
  • Background: We utilized diffusion tensor imaging (DTI) to evaluate the cerebral white matter changes that are associated with phantom limb pain in patients with unilateral arm amputation. It was anticipated that this would complement previous research in which we had shown that changes in cerebral blood volume were associated with the cerebral pain network. Methods: Ten patients with phantom limb pain due to unilateral arm amputation and sixteen healthy age-matched controls were enrolled. The intensity of phantom limb pain was measured by the visual analogue scale (VAS) and depressive mood was assessed by the Hamilton depression rating scale. Diffusion tensor-derived parameters, including fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD), were computed from the DTI. Results: Compared with controls, the cases had alterations in the cerebral white matter as a consequence of phantom limb pain, manifesting a higher AD of white matter in both hemispheres symmetrically after adjusting for individual depressive moods. In addition, there were associations between the RD of white matter and VAS scores primarily in the hemispheres related to the missing hand and in the corpus callosum. Conclusions: The phantom limb pain after unilateral arm amputation induced plasticity in the white matter. We conclude that loss of white matter integrity, particularly in the hemisphere connected with the missing hand, is significantly correlated with phantom limb pain.

Effects of Korean Red Ginseng on White Matter Microstructure and Cognitive Functions : A Focus on Intrusion Errors (고려 홍삼이 대뇌 백질 미세구조 및 인지기능에 미치는 효과 : 침입 오류를 중심으로)

  • Jeong, Hyeonseok S.;Kim, Young Hoon;Lee, Sunho;Yeom, Arim;Kang, Ilhyang;Kim, Jieun E.;Lee, Junghyun H.;Ban, Soonhyun;Lim, Soo Mee;Lee, Sun Hea
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.78-86
    • /
    • 2015
  • Objectives Although ginseng has been reported to protect neuronal cells and improve various cognitive functions, relationship between ginseng supplementation and response inhibition, one of the important cognitive domains has not been explored. In addition, effects of ginseng on in vivo human brain have not been investigated using the diffusion tensor imaging (DTI). The purpose of the current study is to investigate changes in intrusion errors and white matter microstructure after Korean Red Ginseng supplementation using standardized neuropsychological tests and DTI. Methods Fifty-one healthy participants were randomly allocated to the Korean Red Ginseng (n = 26) or placebo (n = 25) groups for 8 weeks. The California Verbal Learning Test was used to assess the number of intrusion errors. Intelligence quotient (IQ) was measured with the Korean Wechsler Adult Intelligence Scale. Depressive and anxiety symptoms were evaluated using Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Hopkins Symptom Checklist-25. The fractional anisotropy (FA) was measured from the brain DTI data. Results After the 8-week intervention, Korean Red Ginseng supplementation significantly reduced intrusion errors after adjusting age, sex, IQ, and baseline score of the intrusion errors (p for interaction = 0.005). Change in FA values in the left anterior corona radiata was greater in the Korean Red Ginseng group compared to the placebo group (t = 4.29, p = 0.04). Conclusions Korean Red Ginseng supplementation may be efficacious for improving response inhibition and white matter microstructure integrity in the prefrontal cortex.

Development of a Korean Standard Structural Brain Template in Cognitive Normals and Patients with Mild Cognitive Impairment and Alzheimer's Disease (정상노인 및 경도인지장애 및 알츠하이머성 치매 환자에서의 한국인 뇌 구조영상 표준판 개발)

  • Kim, Min-Ji;Jahng, Geon-Ho;Lee, Hack-Young;Kim, Sun-Mi;Ryu, Chang-Woo;Shin, Won-Chul;Lee, Soo-Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.103-114
    • /
    • 2010
  • Purpose : To generate a Korean specific brain template, especially in patients with Alzheimer's disease (AD) by optimizing the voxel-based analysis. Materials and Methods : Three-dimensional T1-weighted images were obtained from 123 subjects who were 43 cognitively normal subjects and patients with 44 mild cognitive impairment (MCI) and 36 AD. The template and the corresponding aprior maps were created by using the matched pairs approach with considering differences of age, gender and differential diagnosis (DDX). We measured several characteristics in both our and the MNI templates, including in the ventricle size. Also, the fractions of gray matter and white matter voxels normalized by the total intracranial were evaluated. Results : The high resolution template and the corresponding aprior maps of gray matter, white matter (WM) and CSF were created with the voxel-size of $1{\times}1{\times}1\;mm$. Mean distance measures and the ventricle sizes differed between two templates. Our brain template had less gray matter and white matter areas than the MNI template. There were volume differences more in gray matter than in white matter. Conclusion : Gray matter and/or white matter integrity studies in populations of Korean elderly and patients with AD are needed to investigate with this template.

Regional Differences in Blood-Brain Barrier Permeability in Cognitively Normal Elderly Subjects: A Dynamic Contrast-Enhanced MRI-Based Study

  • Il Heon Ha;Changmok Lim;Yeahoon Kim;Yeonsil Moon;Seol-Heui Han;Won-Jin Moon
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1152-1162
    • /
    • 2021
  • Objective: This study aimed to determine whether there are regional differences in the blood-brain barrier (BBB) permeability of cognitively normal elderly participants and to identify factors influencing BBB permeability with a clinically feasible, 10-minute dynamic contrast-enhanced (DCE) MRI protocol. Materials and Methods: This IRB-approved prospective study recruited 35 cognitively normal adults (26 women; mean age, 64.5 ± 5.6 years) who underwent DCE T1-weighted imaging. Permeability maps (Ktrans) were coregistered with masks to calculate the mean regional values. The paired t test and Friedman test were used to compare Ktrans between different regions. The relationships between Ktrans and the factors of age, sex, education, cognition score, vascular risk burden, vascular factors on imaging, and medial temporal lobar atrophy were assessed using Pearson correlation and the Spearman rank test. Results: The mean permeability rates of the right and left hippocampi, as assessed with automatic segmentation, were 0.529 ± 0.472 and 0.585 ± 0.515 (Ktrans, x 10-3 min-1), respectively. Concerning the deep gray matter, the Ktrans of the thalamus was significantly greater than those of the putamen and hippocampus (p = 0.007, p = 0.041). Regarding the white matter, the Ktrans value of the occipital white matter was significantly greater than those of the frontal, cingulate, and temporal white matter (p < 0.0001, p = 0.0007, p = 0.0002). The variations in Ktrans across brain regions were not related to age, cognitive score, vascular risk burden, vascular risk factors on imaging, or medial temporal lobar atrophy in the study group. Conclusion: Our study demonstrated regional differences in BBB permeability (Ktrans) in cognitively normal elderly adults using a clinically acceptable 10-minutes DCE imaging protocol. The regional differences suggest that the integrity of the BBB varies across the brains of cognitively normal elderly adults. We recommend considering regional differences in Ktrans values when evaluating BBB permeability in patients with neurodegenerative diseases.

Injury of Corticostriatal Tract between the Striatum and the Premotor Area in a Patient with Traumatic Brain Injury

  • Kwon, Jung-Won;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.391-393
    • /
    • 2020
  • Objectives: We investigated injury of corticostriatal (CStr) tract in patient with mild traumatic brain injury (mTBI), which was demonstrated by DTT. Method: A 44-year-old female with no previous history of neurological, physical, or psychiatric illness had suffered from head trauma resulting from a pedestrian car accident. She complained that could not quickly move the left hand with her intension. After three month's administration, her slowness movement of left hand recovered rapidly to the point that she was able to extend all fingers quickly. Results: On DTT configuration, the integrity of the left CStr tract was well-preserved, however the right CStr tract showed narrowing and partial tearing in the subcortical white matter on a DTT at 25 months after onset. Conclusion: Injury of the right CStr tract was demonstrated in a patient who developed mild motor control problems following mild TBI. We believe that the evaluation of the CStr tract from the secondary motor area for patients who showed unexplained motor control problem is necessary.

Evaluation of White Matter Abnormality in Mild Alzheimer Disease and Mild Cognitive Impairment Using Diffusion Tensor Imaging: A Comparison of Tract-Based Spatial Statistics with Voxel-Based Morphometry (확산텐서영상을 이용한 경도의 알츠하이머병 환자와 경도인지장애 환자의 뇌 백질의 이상평가: Tract-Based Spatial Statistics와 화소기반 형태분석 방법의 비교)

  • Lim, Hyun-Kyung;Kim, Sang-Joon;Choi, Choong-Gon;Lee, Jae-Hong;Kim, Seong-Yoon;Kim, Heng-Jun J.;Kim, Nam-Kug;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.115-123
    • /
    • 2012
  • Purpose : To evaluate white matter abnormalities on diffusion tensor imaging (DTI) in patients with mild Alzheimer disease (AD) and mild cognitive impairment (MCI), using tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM). Materials and Methods: DTI was performed in 21 patients with mild AD, in 13 with MCI and in 16 old healthy subjects. A fractional anisotropy (FA) map was generated for each participant and processed for voxel-based comparisons among the three groups using TBSS. For comparison, DTI data was processed using the VBM method, also. Results: TBSS showed that FA was significantly lower in the AD than in the old healthy group in the bilateral anterior and right posterior corona radiata, the posterior thalamic radiation, the right superior longitudinal fasciculus, the body of the corpus callosum, and the right precuneus gyrus. VBM identified additional areas of reduced FA, including both uncinates, the left parahippocampal white matter, and the right cingulum. There were no significant differences in FA between the AD and MCI groups, or between the MCI and old healthy groups. Conclusion: TBSS showed multifocal abnormalities in white matter integrity in patients with AD compared with old healthy group. VBM could detect more white matter lesions than TBSS, but with increased artifacts.

Cognitive dysfunctions in individuals with diabetes mellitus

  • Kim, Hye-Geum
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.3
    • /
    • pp.183-191
    • /
    • 2019
  • Some patients with type 1 and type 2 diabetes mellitus (DM) present with cognitive dysfunctions. The pathophysiology underlying this complication is not well understood. Type 1 DM has been associated with a decrease in the speed of information processing, psychomotor efficiency, attention, mental flexibility, and visual perception. Longitudinal epidemiological studies of type 1 DM have indicated that chronic hyperglycemia and microvascular disease, rather than repeated severe hypoglycemia, are associated with the pathogenesis of DM-related cognitive dysfunction. However, severe hypoglycemic episodes may contribute to cognitive dysfunction in high-risk patients with DM. Type 2 DM has been associated with memory deficits, decreased psychomotor speed, and reduced frontal lobe/executive function. In type 2 DM, chronic hyperglycemia, long duration of DM, presence of vascular risk factors (e.g., hypertension and obesity), and microvascular and macrovascular complications are associated with the increased risk of developing cognitive dysfunction. The pathophysiology of cognitive dysfunction in individuals with DM include the following: (1) role of hyperglycemia, (2) role of vascular disease, (3) role of hypoglycemia, and (4) role of insulin resistance and amyloid. Recently, some investigators have proposed that type 3 DM is correlated to sporadic Alzheimer's disease. The molecular and biochemical consequences of insulin and insulin-like growth factor resistance in the brain compromise neuronal survival, energy production, gene expression, plasticity, and white matter integrity. If patients claim that their performance is worsening or if they ask about the effects of DM on functioning, screening and assessment are recommended.