• Title/Summary/Keyword: White Portland Cement

Search Result 16, Processing Time 0.021 seconds

Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix

  • Nam, I.W.;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.427-438
    • /
    • 2015
  • The present work proposes a new image analysis method for the evaluation of the multi-walled carbon nanotube (MWNT) distribution in a cement matrix. In this method, white cement was used instead of ordinary Portland cement with MWNT in an effort to differentiate MWNT from the cement matrix. In addition, MWNT-embedded cement composites were fabricated under different flows of fresh composite mixtures, incorporating a constant MWNT content (0.6 wt%) to verify correlation between the MWNT distribution and flow. The image analysis demonstrated that the MWNT distribution was significantly enhanced in the composites fabricated under a low flow condition, and DC conductivity results revealed the dramatic increase in the conductivity of the composites fabricated under the same condition, which supported the image analysis results. The composites were also prepared under the low flow condition (114 mm < flow < 126 mm), incorporating various MWNT contents. The image analysis of the composites revealed an increase in the planar occupation ratio of MWNT, and DC conductivity results exhibited dramatic increase in the conductivity (percolation phenomena) as the MWNT content increased. The image analysis and DC conductivity results indicated that fabrication of the composites under the low flow condition was an effective way to enhance the MWNT distribution.

Characteristics of White Portland Cement Clinker Produced from Low-temperature Sintering Technology using Fluorine based Semiconductor Sludge (불소 함유 반도체 슬러지를 활용한 저온 소성 기술로 제조된 백색 포틀랜드 시멘트 클링커 특성)

  • Su-Hyeon Park;Hyun-Yeop Na;Bong-Choon Hwang;Ju-il Eom;Yun-Yong Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • In this paper, the effect on cement clinker and cement quality was studied to prove the effect of reducing the sintering temperature of cement clinker as a mineralizer to recycle fluorine based semiconductor sludge, an industrial by-product. In addition, a verification study was conducted to compare the properties of clinker and cement at different temperatures when natural fluorite, previously used as a mineralizer, was used. As a result of the study, semiconductor sludge showed sufficient effectiveness as a mineralizer and could replace natural fluorite, an existing mineralizer.

A Study of Black Mortar Fluidity and Setting Time by Mixing of Pigment (안료의 혼입에 따른 블랙모르타르의 유동성 및 응결시간에 관한 연구)

  • Jang, Hong-Seok;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.673-676
    • /
    • 2008
  • Color concrete utilizes peculiar texture and color sense in external appearance actively as a finish. But, this color concrete is essential use of pigment for required color revelation, and color cone cleat from mixing of this pigment are different existent achromatic color concrete and basic properties of matter. this study progressed slump test and setting time examination through mortar injection resistance examination of mortar that mix Pigment.

  • PDF

Prototype Production of Retaining Wall Block using Liquefied Red Mud (액상화 레드머드를 적용한 보강토 블록의 시제품 생산)

  • Kang, Hye Ju;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.179-180
    • /
    • 2018
  • Color concrete is produced by adding white portland cement and coloring agent. In Korea, colorant added to color concrete is expensive, durability evaluation in external environment is not verified and there is a tendency to avoid color concrete pouring. Red mud with a water content of 50% was prepared in liquid form using appropriate mixing water and additives for recycling as a coloring agent, the liquefied red mud manufactured was intended to show the possibility of using color concrete. In this paper, the application of red mud as an industrial by - product as a coloring agent for color concrete was investigated for the practical use of liquefied red mud by liquefying red mud and producing retaining wall block. As a result, it was found that all of the specifications stipulated in SPS-KCIC0001-0703 are satisfied.

  • PDF

The Optimal Composition Range of the EVA Powder for Resistance Wheel moving Load of Cement Mortar-Type Surface Finishing Material for Parking Slab (시멘트 모르타르계 주차장 바닥 마감재의 윤하중 저항성능을 위한 EVA 분말수지의 최적 첨가 범위에 관한 실험적 연구)

  • Shao, Xu-Dong;Kwak, Kyu-Sung;Chae, Woo-Byung;Bae, Kee-Sun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.67-70
    • /
    • 2010
  • This study investigates the physical properties of the acrylic emulsion mortar according to variable composition set of redispersible emulsion powders. This materials have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. The redispersible emulsion powders using "2, 4, 6, 8kg" of EVA polymers dispersion ranges are prepared with acrylic emulsion mortars and were tested for basic characteristics such as flexural, and compressive strength, wheel load. Through experiments we found that the improved formula to satisfy the standard of wheel load by EVA polymers, and the masration rangs between about 2.0% to 2.6% which the white portland cenmet and EVA polymers is good for resistauce wheel load.

  • PDF

Comparative analysis of physicochemical properties of root perforation sealer materials

  • Orcati Dorileo, Maura Cristiane Goncales;Pedro, Fabio Luis Miranda;Bandeca, Matheus Coelho;Guedes, Orlando Aguirre;Villa, Ricardo Dalla;Borges, Alvaro Henrique
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • Objectives: This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials. Materials and Methods: For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (${\alpha}$ = 0.05). Results: The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO ($\hat{A}$ngelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge. Conclusions: On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses.