• Title/Summary/Keyword: White Korean ginseng

Search Result 406, Processing Time 0.026 seconds

Further Purification of Radioprotective Ginseng Protein Fraction by Gel Filtration (Gel filtration에 의한 한방사선 인삼단백 분획의 정제)

  • 김춘미;박경애
    • Journal of Ginseng Research
    • /
    • v.13 no.2
    • /
    • pp.254-259
    • /
    • 1989
  • A radioprotective ginseng protein fraction was obtained from Korean white ginseng powder by the following isolation and purification procedures: Tris-HCI buffer extraction, 70% ammonium sulfate fractionation, CM-rellulosr column chromatography, heat inactivation and Sephadex G-75 column chromatography. This fraction was further purified by Sepharose 4B and Sephadex G-150 column chromatographies. Three fractions obtained were subjected to Native-PAGE and SDS-PAGE using gradient gels and the silver staining method. Molecular weights of the native proteins and their subunits were estimated.

  • PDF

Combined Effect of Fermentation and Extrusion Process on Antioxidant Properties of Sangmaksan (압출성형 공정을 이용한 발효 생맥산의 항산화 활성)

  • Yang, Hye-Jin;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.566-571
    • /
    • 2009
  • The principal objective of this study was to use a fermentation and extrusion process in order to improve the antioxidant properties of original Sangmaksan (ES), containing maekmoondong, omija, and white ginseng. The antioxidant activities of fermented Sangmaksan prepared with different types of ginseng [white (FSW), red (FSR), and extruded white (FSE)], were investigated. The white ginseng powder was extruded at 20% moisture content and $120^{\circ}C$ of the maximum process temperature at the barrel. The antioxidant properties of Sangmaksan were increased after fermentation. Interestingly, the fermented Sangmaksan containing the extruded white ginseng evidenced more potent antioxidant properties than the fermented Sangmaksan containing white ginseng. The content of total phenolic compounds, DPPH-radical scavenging activity, acidic polysaccharide, reducing power, and total anthocyanin were highest with FSR, followed by FSE, FSW and ES, respectively. Additionally, superoxide dismutase-like activity and total flavonoid contents were highest in the fermented Sangmaksan containing extruded white ginseng. In conclusion, it can be asserted that the fermentation and extrusion process utilized in this study may prove to be an effective new process for the production of high-quality Sangmaksan.

Volatile Discrimination of Irradiated and Fumigated White Ginseng Powders at Different Storage Times and Temperatures Using the Electronic Nose

  • Shin, Jung-Ah;Kwon, Joong-Ho;Lee, Ki-Teak
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • The pattern of volatile emissions from white ginseng powders (WGP) that were treated with selected preservatives was investigated during 5-months of storage (at -10 and $25^{\circ}C$) by an electronic nose system equipped with 12 metal-oxide sensors. WGP were treated with gamma radiation at 5 kGy, commercial methyl bromide (MeBr), and phosphine fumigations. Electronic nose differentiated the volatile patterns of the WGP with each different preservative treatment. In addition, each volatile pattern was affected by both storage time (1, 2 and 5 months) and temperature (-10 and $25^{\circ}C$). After 5-months of storage, the least change of volatile patterns was observed from WGP fumigated with phosphine at $-10^{\circ}C$. The result also showed that volatile changes in WGP were much more affected by storage time than by storage temperature.

Changes in Color Intensity and Components during Browning Reaction of White Ginseng Water Extract (백삼 물추출물의 갈변반응중 갈색도 및 성분의 변화)

  • Do, Jae-Ho;Kim, Kyung-Hee;Jang, Jin-Gyu;Yang, Jai-Won;Lee, Kwang-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.480-485
    • /
    • 1989
  • Changes of color intensity and components during browning reaction of water extracts from white tail ginseng were investigated. Temperature dependence was described by the Arrhenius relationship with an activation energy of 16kcal/mole. Temperature sensitivities$(Q_{10}\;value)$ for water extracts of ginseng was 1.90 between $70^{\circ}C\;and\;80^{\circ}C$, 1.57 between $80^{\circ}C\;and\;90^{\circ}C$ and 1.46 between $90^{\circ}C\;and\;100^{\circ}C$. pH value of the solution treated at $90^{\circ}C\;and\;100^{\circ}C$ slightly increased with an increase in reaction time. Among ginseng saponins ginsenoside-Re was most unstable against heat-treatment, white diol group saponins were more stable against heat-treatment. Hydrogen donating activity (reducing activity for ${\alpha},\;{\alpha}'-diphenyl-{\beta}-picrylhydrazyl$) and 3,5-dinitrosalicylic acid(DNS) positive substances of browning reaction products increased in proportion to the length of browning reaction time and temperature, whereas folin positive substances decreased by heat-denaturation of ginseng protein at initial reaction time and then increased thereafter.

  • PDF

A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models

  • Saba, Evelyn;Lee, Yuan Yee;Kim, Min Ki;Kim, Seung-Hyung;Hong, Seung-Bok;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.577-584
    • /
    • 2018
  • Background: Ginseng (Panax ginseng) is a widely used traditional herbal supplement that possesses various health-enhancing efficacies. Various ginseng products are available in market, especially in the Korean peninsula, in the form of drinks, tablets, and capsules. The different ginseng types include the traditional red ginseng extract (RGE), white ginseng, and black red ginseng extract (BRGE). Their fermented and enzyme-treated products are also available. Different treatment regimens alter the bioavailability of certain compounds present in the respective ginseng extracts. Therefore, in this study, we aimed to compare the antioxidant and immune-stimulating activities of RGE, BRGE, and fermented red ginseng extract (FRGE). Methods: We used an acetaminophen-induced oxidative stress model for investigating the reduction of oxidative stress by RGE, BRGE, and FRGE in Sprague Dawley rats. A cyclophosphamide-induced immunosuppression model was used to evaluate the immune-stimulating activities of these ginseng extracts in BALB/c mice. Results: Our results showed that most prominently, RGE (in almost all experiments) exhibited excellent antioxidant effects via increasing superoxide dismutase, catalase, and glutathione peroxidase activities in the liver and decreasing serum 8-hydroxy-2'-deoxyguanosine, aspartate aminotransferase, and lactate dehydrogenase levels compared with the groups treated with FRGE and BRGE. Moreover, RGE significantly increased the number of white blood cells, especially T and B lymphocytes, and antibody-forming cells in the spleen and thymus, and it also activated a number of immune cell subtypes. Conclusion: Taken together, these results indicate that RGE is the best supplement for consumption in everyday life for overall health-enhancing properties.

Differential Metabolomics Analysis of Ginseng (Panax ginseng) by Processing Time (가공시간에 따른 인삼의 대사체학 분석)

  • Choi, Moon-Young;Kim, Kyung-Min;Choi, Min-Suk;Heo, Yun-Seok;Lee, Hae-Na;Lee, Choong-Woo;Kwon, Sung-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Red ginseng is made of white ginseng through the steaming and drying procedure. In this process, the amounts of toxic elements of ginseng are decreased and those of effective components, ginsenosides are increased. In order to identify the components alteration of white ginseng by processing time, we applied HPLC-based metabolomics approach combined with the principal component analysis (PCA) multivariate analysis. White ginsengs were steamed at 0, 1, 2, 4, 8 and 16 h, respectively and followed by drying process at moderate temperature. Then the steamed ginsengs and the commercial red ginsengs were analyzed by HPLC. On the basis of HPLC results, PCA multivariate analysis was applied for evaluating the quality of red ginseng, which showed the processed ginsengs are grouped by processed time because less polar ginsenosides were increased in proportion as the steaming time was increased. The purchased red ginsengs were distributed in the range of $0{\sim}1$ hour steaming time. This pilot experiment suggests that HPLC-based metabolomics approach is able to allow the quality of herbal medicines to be controlled with a simple and economic method.

A Study on the Analysis of Amino Acids in Korean Ginseng (韓國人蔘의 年根別 및 貯藏期間別 아미노酸分析)

  • Rhee, Seong-Hong;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.2
    • /
    • pp.37-53
    • /
    • 1983
  • The contents of amino acids were examined in the 3, 4, 5, and 6 year-old roots of fresh ginseng and the 1979, 1980, 1981, and 1982 years' products of white and red ginsengs. Samples extracted with 75% ethanol for free amino acids and hydrolyzed with 6N-HCL for total amino acids were analyzed by Amino Acid Analyzer (Hitachi model KLA-5). The results were summarized as follows: 1. Amino acids from extracted samples were 18 kinds of Tryptophan, Lysine, Histidine, Arginine, Aspartic acid, Threonine, Serine, Glutamic acid, Proline, Glycine, Alanine, Cystine, Valine, Methionine, Isoleucine, Leucine, Tyrosine, and Phenylalanine. 2. Amino acids detected in hydrolyzed samples were 17 kinds execpt Tryptophan of extracted ones. 3. Arginine was the highest quantity of amino acids in ginseng. 4. The content of Tryptophan was 0.5690 mg/g in the 6 year-old fresh ginseng and trace quantities in other samples. 5. The contents of amino acids were increased in fresh ginseng according to cultivation year. 6. The contents of amino acids in white ginseng were slightly decreased but those in red ginseng were not changed during the storage time. 7. The content ratio of free amino acids to total amino acids were 1:3.

  • PDF

Effects of Temperature and Sugar Addition on The Flavor of Ginseng Tea (온도 및 당의 첨가가 인삼차의 향미에 미치는 영향)

  • Kim, Woo-Jung;Sung, Hyun-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.304-310
    • /
    • 1985
  • Sensory comparison of the flavor of ginseng teas prepared from concentrated white or red ginseng extract was investigated by multipl comparison test and quantitative descriptive analysis (QDA) on 12 selected descriptions. The white ginseng tea revealed higher intensities in odor and taste than those of red ginseng tea, particularly on earthy and sweet odor and bitter and astringent taste. Increase in sample temperature from $2^{\circ}C$ to $80^{\circ}C$ caused a general increase in aroma and bitter taste. When sucrose added into 3% ginseng tea solution, all of the taste descriptions, most significantly on bitterness and astringency, scored lower except sweetness while the aroma was affected a little.

  • PDF

Studies on the Antioxidant Components of Korean Ginseng(II) -The Effect of Ferric Ion on the Antioxidant Activity- (인삼(人蔘)의 항산화작용(抗酸化作用)에 관(關)한 연구(II) -인삼(人蔘)의 항산화활성(抗酸化活性)에 대한 삼가철(三價鐵) ion의 영향-)

  • Han, Byung-Hoon;Park, Myung-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.9 no.4
    • /
    • pp.169-171
    • /
    • 1978
  • Methanolic extracts of fresh ginseng, white ginseng and red ginseng were found to have a biological antioxidant activity against ethanol induced lipid peroxidation in the mouse liver. This antioxidant activities were repressed by the addition of ferric ion to the Korean ginseng in the process of its extraction.

  • PDF