• Title/Summary/Keyword: Where2.0

Search Result 5,562, Processing Time 0.039 seconds

THE STRUCTURE OF A CONNECTED LIE GROUP G WITH ITS LIE ALGEBRA 𝖌=rad(𝖌)⊕ 𝔰𝒍(2,𝔽)

  • WI, MI-AENG
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • The purpose of this study is to construct the structure of the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$, which conforms to Stellmacher's [4] Pushing Up. The main idea of this paper comes from Stellmacher's [4] Pushing Up. Stelhnacher considered Pushing Up under a finite p-group. This paper, however, considers Pushing Up under the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$. In this paper, $O_p(G)$ in [4] is Q=exp(q), where q=nilrad(g) and a Sylow p-subgroup S in [7] is S=exp(s), where $s=q{\oplus}\{\(\array{0&*\\0&0}\){\mid}*{\in}\mathbb{F}\}$. Showing the properties of the connected Lie group and the subgroups of the connected Lie group with relations between a connected Lie group and its Lie algebras under the exponential map, this paper constructs the subgroup series C_z(G)

  • PDF

3 Dimensional Numerical Simulation for the Closed Loop Heat Pump System Using TOUGH2 (TOUGH2를 이용한 폐쇄형 지열펌프 시스템의 3차원 모델링 연구)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.36-39
    • /
    • 2006
  • To evaluate the effect of groundwater flow on the outlet temperature of a geothermal heat pump, 3 dimensional numerical simulations are performed considering both groundwater flow and pipe flow in the U-tube using TOUGHS, The present study involved the following 4 simulation cases (1) no groundwater flow, (2) slow groundwater flow (hydraulic conductivity: $1.0{\times}10^{-9}m/s)$, (3) fast groundwater flow (hydraulic conductivity, $1.0{\times}10^{-7}m/s$), and (4) groundwater flow varying with the depth (hydraulic conductivity: $1.0{\times}10^{-7}-1.0{\times}10^{-10}m/s$). The effect of groundwater flow on the outlet temperature is significant where hydraulic conductivity of aquifer is $1.0{\times}10^{-7}m/s$. Where hydraulic conductivity of aquifer is $1.0{\times}10^{-10}m/s$, however, that effect is negligible.

  • PDF

RATIONAL DIFFERENCE EQUATIONS WITH POSITIVE EQUILIBRIUM POINT

  • Dubickas, Arturas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.645-651
    • /
    • 2010
  • In this note we study positive solutions of the mth order rational difference equation $x_n=(a_0+\sum{{m\atop{i=1}}a_ix_{n-i}/(b_0+\sum{{m\atop{i=1}}b_ix_{n-i}$, where n = m,m+1,m+2, $\ldots$ and $x_0,\ldots,x_{m-1}$ > 0. We describe a sufficient condition on nonnegative real numbers $a_0,a_1,\ldots,a_m,b_0,b_1,\ldots,b_m$ under which every solution $x_n$ of the above equation tends to the limit $(A-b_0+\sqrt{(A-b_0)^2+4_{a_0}B}$/2B as $n{\rightarrow}{\infty}$, where $A=\sum{{m\atop{i=1}}\;a_i$ and $B=\sum{{m\atop{i=1}}\;b_i$.

QUADRATIC ρ-FUNCTIONAL INEQUALITIES

  • YUN, SUNGSIK;LEE, JUNG RYE;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2016
  • In this paper, we solve the quadratic ρ-functional inequalities (0.1) ${\parallel}f(x+y)+f(x-y)-2f(x)-2f(y){\parallel}$ $\leq$ ${\parallel}{\rho}(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)){\parallel}$, where $\rho$ is a fixed complex number with $\left|{\rho}\right|$ < 1, and (0.2) ${\parallel}4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y){\parallel}$ $\leq$ ${\parallel}{\rho}(f(x+y)+f(x-y)-2f(x)-2f(y)){\parallel}$, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

ADDITIVE ρ-FUNCTIONAL INEQUALITIES

  • LEE, SUNG JIN;LEE, JUNG RYE;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1)${\parallel}f(x+y)+f(x-y)-2f(x){\parallel}$ $\leq$ ${\parallel}{\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ${\parallel}2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$ $\leq$ ${\parallel}{\rho}f(x+y)+f(x-y)-2f(x){\parallel}$, where ρ is a fixed complex number with |ρ| < 1. Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

Modified TEM Horn for Enhanced Radiation Characteristics at Low Frequency

  • Kim, Jae Sik;Park, Hyeong Soon;Yoon, Young Joong;Ryu, Jiheon;Choi, Jin Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.74-78
    • /
    • 2014
  • This paper presents a modified TEM horn that improves radiation characteristics at a low frequency region. The proposed antenna consists of an asymmetric TEM (ATEM) horn and a loop structure with an elliptical shape. The bandwidth and gain at low frequency region can be enhanced by using the ATEM horn configuration and adding a loop structure with an elliptical shape to the ATEM horn. The bandwidth of the proposed antenna is from 2.14 to over 20 GHz, whereas that of the conventional TEM horn is from 2.7 to over 20 GHz, where the dimensions of both antennas are the same except for the thickness of the loop structure. The physical and electrical dimensions of the proposed antenna are $60mm{\times}62.5mm{\times}64mm$ ($width{\times}height{\times}length$) and $0.428{\lambda}_L{\times}0.445{\lambda}_L{\times}0.456{\lambda}_L$, where ${\lambda}_L$ corresponds to the lowest frequency of the bandwidth. The realized gain of the proposed antenna is improved by 0.802 dB on average at the low frequency region (2 to 8 GHz), where the maximum gain increase is 2.932 dB when compared to a conventional TEM horn.

NON-TRIVIALITY OF TWO HOMOTOPY ELEMENTS IN π*S

  • Liu Xiugui
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.783-801
    • /
    • 2006
  • Let A be the mod p Steenrod algebra for p an arbitrary odd prime and S the sphere spectrum localized at p. In this paper, some useful propositions about the May spectral sequence are first given, and then, two new nontrivial homotopy elements ${\alpha}_1{\jmath}{\xi}_n\;(p{\geq}5,n\;{\geq}\;3)\;and\;{\gamma}_s{\alpha}_1{\jmath}{\xi}_n\;(p\;{\geq}\;7,\;n\;{\geq}\;4)$ are detected in the stable homotopy groups of spheres, where ${\xi}_n\;{\in}\;{\pi}_{p^nq+pq-2}M$ is obtained in [2]. The new ones are of degree 2(p - 1)($p^n+p+1$) - 4 and 2(p - 1)($p^n+sp^2$ + sp + (s - 1)) - 7 and are represented up to nonzero scalar by $b_0h_0h_n,\;b_0h_0h_n\tilde{\gamma}_s\;{\neq}\;0\;{\in}\;Ext^{*,*}_A^(Z_p,\;Z_p)$ in the Adams spectral sequence respectively, where $3\;{\leq}\;s\;<\;p-2$.

Improved methods for the preparation of $(Y_{1-x}Eu_x)_2O_3$:MX and $(Y_{1-x-y}Gd_xEu_y)_2O_3$:MX as red phosphor materials

  • Lee, You-Hui;Han, Sang-Do;Kim, Jung-Duk;Chang, Mi-Yeon;Singh, Ishwar.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.715-718
    • /
    • 2004
  • Substantially improved methods for the preparation of europium-doped yttrium oxide red phosphor with the inclusion of alkali metal halides having a general formula $(Y_{1-x}Eu_x)_2O_3$:MX where 0.025${\leq}$x${\leq}$0.2 and MX is alkali halide in the mole ratio 0.025 to 0.6, more preferably between 0.05 to 0.2 mole, are reported. Another series of the red phosphor materials with general formula $(Y_{1-x-y}Gd_xEu_y)_2O_3$:MX where 0.05${\leq}$x${\leq}$0.40 and 0.025${\leq}$y${\leq}$0.20 and MX is alkali halide in the mole ratio 0.025 to 0.5, more preferably between 0.1 to 0.2 mole, has also been presented. The inclusion of alkali halide greatly increase the luminance of the materials. The materials are very soft with fine particle size less than 100nm. The phosphorescent materials have good luminance in VUV region.

  • PDF

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

  • Paokanta, Siriluk;Shim, Eon Hwa
    • The Pure and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.219-227
    • /
    • 2018
  • In this paper, we solve the additive ${\rho}$-functional equations $$(0.1)\;f(x+y)+f(x-y)-2f(x)={\rho}\left(2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)\right)$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < 1, and $$(0.2)\;2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < |2|. Furthermore, we prove the Hyers-Ulam stability of the additive ${\rho}$-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

Anodic Oxidation Behavior of AZ31 Magnesium Alloy in Aqueous Electrolyte Containing Various Na2CO3 Concentrations

  • Moon, Sungmo;Kim, Yeajin
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.331-338
    • /
    • 2016
  • In this work, anodic oxidation behavior of AZ31 Mg alloy was studied as a function of $Na_2CO_3$ concentration in electrolyte by voltage-time curves and observation of surface appearances and morphologies after the anodic treatments, using optical microscopy and confocal scanning laser microscopy (CSLM). The voltage-time curves of AZ31 Mg alloy surface and surface appearances after the anodic treatments showed three different regions with $Na_2CO_3$ concentration : region I, below 0.2 M $Na_2CO_3$ where shiny surface with a number of small size pits; region II, between 0.4 M and 0.6 M $Na_2CO_3$ where dark surface with relatively low number of large size burned or dark spots; region III, more than 0.8 M $Na_2CO_3$ where bright surface with or without large size dark spots were obtained. The anodically treated AZ31 Mg alloy surface became significantly brightened with increasing $Na_2CO_3$ concentration from 0.5 M to 0.8 M which was attribute to the formation of denser and smoother surface films. Pits and porous protruding reaction products were found at relatively large size and small size spots, respectively, on the AZ31 Mg alloy surface in low concentration of $Na_2CO_3$ less than 0.2 M. The formation of pits is attributed to the result of repetition of the formation and detachment of porous anodic reaction products. Based on the experimental results obtained in this work, it is concluded that more uniform, denser and smoother surface of AZ31 Mg alloy could be obtained at more than 0.8 M $Na_2CO_3$ concentration if there is no other oxide forming agent.