• Title/Summary/Keyword: Wheeled mobile robot (WMR)

Search Result 35, Processing Time 0.019 seconds

Position Control of Wheeled Mobile Robot using Self-Structured Neural Network Model (자율가변 구조의 신경망 모델을 이용한 구륜 이동 로봇의 위치 제어)

  • Kim, Ki-Yeoul;Kim, Sung-Hoe;Kim, Hyun;Lim, Ho;Jeong, Young-Hwa
    • The Journal of Information Technology
    • /
    • v.4 no.2
    • /
    • pp.117-127
    • /
    • 2001
  • A self-structured neural network algorithm that finds optimal fuzzy membership functions and nile base to fuzzy model is proposed and a fuzzy-neural network controller is designed to get more accurate position and velocity control of wheeled mobile robot. This procedure that is composed of three steps has its own unique process at each step. The elements of output term set are increased at first step and then the rule base Is varied according to increase of the elements. The adjusted controller is in competition with controller which doesn't include any increased elements. The adjusted controller will be removed if the control-law lost. Otherwise, the controller is replaced with the adjusted system. After finished regulation of output term set and rule base, searching for input membership functions is processed with constraints and fine tuning of output membership functions is done.

  • PDF

Control of Three-Wheeled Welding Mobile Robot

  • Nguyen, Tan Tien;Chung, Tan Lam;Oh, Myung-Suck;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2497-2499
    • /
    • 2002
  • This raper proposes a simple robust nonlinear controller design method based on Lyapunov stability for tracking reference welding trajectory and velocity of a three wheel welding mobile robot (WMR). Control law is obtained from Lyapunov control function to ensure asymptotical stability of the system. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot - Dynamic Model Approach -

  • Bui, Trong Hieu;Nguyen, Tan Tien;Suh, Jin-Ho;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2424-2426
    • /
    • 2002
  • This paper proposes an adaptive control method of partially known system and shows its application result to control for two-wheeled WMR. The controlled system is stable in the sense of Lyapunov stability. To design a tracking controller for welding path reference, an error configuration is defined and the controller is designed to drive the error to zero as fast as desired. Moments of inertia of system are considered to be unknown system parameters. Their values are estimated using update laws in adaptive control scheme. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Object-Transportation Control of Cooperative AGV Systems Based on Virtual-Passivity Decentralized Control Algorithm

  • Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1720-1730
    • /
    • 2005
  • Automatic guided vehicle in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control to multiple AGV systems. Each AGV system is under nonholonomic constraints and conveys a common object-transportation in a horizontal plain. Moreover it is shown that cooperative robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to trace a circle. Finally, the simulation and experimental results for the object-transportation by two AGV systems illustrates the validity of the proposed virtual-passivity decentralized control algorithm.

A Study on Identification of Optimal Fuzzy Model Using Genetic Algorithm (유전알고리즘을 이용한 최적 퍼지모델의 동정에 관한연구)

  • 김기열
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2000
  • A identification algorithm that finds optimal fuzzy membership functions and rule base to fuzzy model isproposed and a fuzzy controller is designed to get more accurate position and velocity control of wheeled mobile robot. This procedure that is composed of three steps has its own unique process at each step. The elements of output term set are increased at first step and then the rule base is varied according to increase of the elements. The adjusted system is in competition with system which doesn't include any increased elements. The adjusted system will be removed if the system lost. Otherwise, the control system is replaced with the adjusted system. After finished regulation of output term set and rule base, searching for input membership functions is processed with constraints and fine tuning of output membership functions is done.

  • PDF