• Title/Summary/Keyword: Wheel-rail Superconductivity

Search Result 2, Processing Time 0.014 seconds

Characteristic Analysis of Superconducting LSM for the Wheel-rail-guided Very High Speed Train according to Winding Method of the Ground 3-phase Coils (휠-레일 방식 초고속열차용 초전도 선형동기전동기의 지상권선 방식별 특성 분석)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Chang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1164-1169
    • /
    • 2014
  • Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated by a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, the design and characteristic analysis of a coreless-type superconducting Linear Synchronous Motor (LSM) for 600km/h very high speed railway system are conducted in this paper. The designed coreless-type superconducting LSMs are the distributed winding model, the concentrated 1 layer winding model and the concentrated 2 layer winding model, respectively. In addition, the characteristic comparison studies on each LSM are conducted.

Design of a Small-scaled Superconducting LSM for the Very High Speed Railway Vehicle (레일방식 초고속열차 추진용 축소 초전도 LSM 설계 연구)

  • Park, Chan-Bae;Kim, Jae-Hee;Lss, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1602-1607
    • /
    • 2014
  • This paper deals with the design and property analysis of 7kW-class small-scaled superconducting Linear Synchronous Motor (LSM) and testing equipment for a number of performance pre-tests prior to the development of coreless-type superconducting LSM suitable for 600km/h very high speed train. First, the basic design and property analysis are conducted before developing a small-scaled superconducting LSM model with 2-pole superconducting electromagnets, and additionally the cost-down design of the superconducting electromagnets is conducted to use less high-Tc superconducting wire. Finally, the superconducting magnet coil span is selected at 120mm, and input ground armature current of 670Aturns is required to produce 44.7N of thrust based on research findings.