• Title/Summary/Keyword: Wheel-Legged Robot

Search Result 12, Processing Time 0.019 seconds

Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation (고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정)

  • Shin, Dong-Hwan;An, Jin-Ung;Moon, Jeon-Il
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing (휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법)

  • Jeong, Soonkyu;Won, Mooncheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

A New Wheel Design for Miniaturized Terrain Adaptive Robot (험지 주행용 소형 로봇을 위한 바퀴의 설계)

  • Kim, Yoo Seok;Kim, Haan;Jung, Gwang Pil;Kim, Seong Han;Cho, Kyu Jin;Chu, Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2013
  • Small mobile robots which use round wheels are suitable for driving on a flat surface, but it cannot climb the obstacle whose height is greater than the radius of wheels. As an alternative, legged-wheels have been proposed by many researchers due to its better climbing performance. However, driving and climbing performances have a trade-off relationship so that their driving performance should be sacrificed. In this study, in order to achieve both driving and climbing performances, a new transformable wheel was developed. The developed transformable wheel can have a round shape on a flat surface and change its shape into legged-wheel when it makes a contact with an obstacle. For design of the transformable wheel, the performance of legged-wheel was analyzed with respect to the number and curvature of the leg, and then the new transformable wheel was designed based on the analysis. Contrary to the existing transformable wheels that contain additional actuators for the transformation, the developed transformable wheel can be unfolded without any additional actuator. In this study, in order to validate the transformable wheel, a simple robot platform was fabricated. Consequently, it climbed the obstacle whose height is 2.6 times greater than the wheel radius.

Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning (심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법)

  • Soonkyu Jeong;Mooncheol Won
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

Design of Hybrid Wheeled and Legged Mobile Robot with a Waist Joint (허리 구조를 갖는 복합 바퀴-다리 이동형 로봇의 설계)

  • Choi, Dae-Gyu;Jeong, Dong-Hyuk;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.304-309
    • /
    • 2014
  • In this paper, we design a hybrid wheeled and legged mobile robot with a waist joint. The proposed hybrid mobile robot is designed to have a hybrid structure with leg and wheel for the efficient movement in flat and uneven surfaces. The proposed robot have a waist joint that is used to stably transform from wheeled driving to legged walking of the robot and to overcome non-flat surface. In order to recognize various environments we use LRF sensor, PSD sensor, CCD camera. Also, a motion planning method for hybrid mobile robot with a waist joint is proposed to select wheeled driving motion and legged walking motion of the robot based the environment types. We verify the efficient mobility of the developed hybrid mobile robot through navigation experiments using the proposed motion planning method in various environments.

A Development of 4-legged Walking Machine and the Enhancement of Static Stability Margin Using Balancing Weight (사각 보행 로보트의 제작 및 균형추를 이용한 안정성 향상에 관한 연구)

  • 강신천;오준호;정경민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.146-154
    • /
    • 1991
  • As the application of robotic systems expand its scope, more research efforts are given in providing mobility to the robotic systems so that they can travel across various paths including those with formidable obstacles such as stairways or rough terrains. Legged locomotion is mainly concerned because the walking motion, like that of animal behavior, has many advantages over wheel type or track type locomotion especially in rough terrain. Walking robot, in general, having a discrete number of legs, have inherently low static stability. Static stability can be increased to a certain degree, by improving walking method, but it has many limitations such as reduced travel speed. A very promising possibility lies in the use of balancing weight, nevertheless its actual implementation is very rare. In this study, a 4-legged walking machine is developed and the static stability margin is increased with the balancing weight. In the future, this robot will be used to take an experiment on the walking in mush terrain.

  • PDF

The development of mobile robot for hostile environment controlled by three motors (3개의 모터로 구동되는 극한작업용 이동로보트의 개발)

  • 권대갑;차영엽;염도성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.704-709
    • /
    • 1990
  • This study presents the structure and the gate control algorithm of KAMOBOT (KAIST Mobile Robot). The mobile robot has a six-legged, cylindrical configuration, each leg of which is equiped with a wheel at the bottom. The robot can go up and down stairs, go over obstacles, move along curvilinear paths and rotate around it's geometric center. Such maneuverability can be achieved by using only three electric motors.

  • PDF

Step-Type Obstacle Traversal Algorithm for Six Legged Mobile Robot (견마형 로봇의 계단형 장애물 극복 알고리즘 개발)

  • Shim, Hyung-Won;Lee, Ji-Hong;Kim, Jung-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • Mobile robots traveling on rough terrain need several algorithms to overcome obstacles. In this paper, we propose the step-type obstacle traversal algorithm to adapt the mobile robot with six arms and wheels to travel on rough terrain. Obstacle traversal is composed of two different stages: planning and control. In planning stage, the required joint torque of each arm as well as the interference between the wheels and the arms are analyzed to guarantee traversing obstacles. Control stage includes such steps as checking distance to obstacle, determining the height and length of obstacle, performing arm motion according to sensed torque data, and evaluating safety at every instance. The proposed algorithm is designed and implemented for CALEB 1 six legged robot developed in the laboratory and verified by simulation and experiment in outdoor environment.

  • PDF

Design and Fabrication of Soft Deformable Wheel Robot using Composite Materials and Shape Memory Alloy Coil Spring Actuators (복합 재료와 형상 기억 합금 코일 스프링 구동기를 이용한 유연하게 변형 가능한 바퀴 로봇의 설계 및 제작)

  • Koh, Je-Sung;Lee, Dae-Young;Kim, Ji-Suk;Kim, Seung-Won;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • In order to operate a search and rescue robot in hazardous area, the robot requires high mobility and adaptable locomotion for moving in unpredictable environments. In this paper, we propose the deformable soft wheel robot that can produce three kinds of driving modes; caterpillar driving mode, normal wheel driving mode, legged-wheel driving mode. The robot changes its driving mode as it faces the various obstacles such as a small gap, stairs etc. Soft film and composite materials are used for fabrication of deformable wheel structure and Shape Memory Alloy (SMA) coil spring actuators are attached on the structure as an artificial muscle. Film lamination and an composite manufacturing process is introduced and the robot design is required to be modified and compromised to applying the manufacturing process. The prototype is developed and tested for verifying feasibility of the deformable wheel locomotion.

Development of a Service Hybrid Mobile Robot for Climbing Stairs and Thresholds by Switching Wheel and Leg Gait (바퀴/4 족 동작 전환으로 계단 및 문턱 오르기가 가능한 서비스 하이브리드 이동 로봇 개발)

  • Kim, Jin-Baek;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1082-1091
    • /
    • 2007
  • In this paper, we developed a new hybrid mobile robot which can climb stairs and go over thresholds by crawl gait with embedded real-time control software. This robot is also categorized into hybrid robot that has advantages of wheeled mobile robot and legged mobile robot, but adopts gait feature of crocodile named belly crawl. We imitated the belly crawl using four legs of 2 DOF, four omni-directional wheels, and embedded control software which controls legs and wheels. This software is developed using RTAI/Linux, real-time drivers. As a result, the new hybrid mobile robot has crawl gait. Using this feature, the new hybrid mobile robot can climb stairs and go over thresholds just by path planning of each leg with size of stairs and thresholds, and computing the movement distance of robot body center without considering stability. The performance of our new hybrid mobile robot is verified via experiments.