• Title/Summary/Keyword: Wheel tread damage

Search Result 13, Processing Time 0.029 seconds

A Study on the Brake Frictional Heat between Wheel Tread and Brake Shoe of E.M.U.'s (도시철도 차량의 차륜답면과 제륜자간 제동 마찰열에 관한 연구)

  • Kim, Seong-Keol;Yoon, Cheon-Joo;Goo, Byeong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.95-103
    • /
    • 2006
  • Wheel treads of E.M.U. are usually under a heavy thermal load by brake frictional heat between wheel and brake shoe and damaged by repeated thermal and mechanical loads. To examine the cause of wheel tread damage of E.M.U.'s in service running, a systematic approach has been used. This study is composed of three parts. Frictional heat analysis was conducted in the first part by finite element method. Two kinds of brake shoes in service were considered. In the second part, experimental study was carried out on a brake dynamometer. Temperatures were measured for the two brake shoes. And experimental study in service running E.M.U.'s was performed. Wheel and brake shoe temperatures were measured by using thermocouples and temperature indicating strips. Finally metallurgical characteristics were examined by a SEM/EDS and the cause of the wheel damage was analyzed. It seems that aggregated ferrous component is a main cause of the wheel tread damage.

Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics (비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가)

  • Kwon, Seok-Jin;Lee, Dong-Hyung;Seo, Jung-Won;Kwon, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.

Characteristics of Wheel Tread for Urban Train Based on Contact Positions (접촉위치에 따른 도시철도 차륜 답면의 특성 변화)

  • Kwon, Seok-Jin;Noh, Hang-Nak;Nam, Yoon-Su;Seo, Jung-Won;Lee, Dong-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2008
  • The damaged wheel in railway vehicle would cause a poor ride comfort, a rise in the maintenance cost and even fracture of the wheel, which then leads to a tremendous social and economical cost. The defect initiation and crack propagation in wheel may result in the damage of the railway vehicle or derailment. Therefore, it is important to evaluate the characteristics of the wheel tread. In the present paper, the characteristics of wheel tread based on contact positions, running distance and brake pattern are evaluated. The result shows that the damaged wheel tread is remarkably depended on the contact positions between wheel and rail.

Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread (차륜 답면의 열손상에 대한 잔류응력 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

A Study on the Development of Highly Efficient Sintered Brake Shoe in Railway Vehicle (철도 차량용 고성능 소결제륜자 개발에 관한 연구)

  • Ko, Kwang-Nam;Kim, Sung-Kwon;Kim, Sang-Ho;Kwon, Seok-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.986-993
    • /
    • 2011
  • The role of brake is safely to transport passenger & cargo and stop vehicles at emergency in railway vehicle. Brake system reduces the speed by control command of electricity or air. mechanical methods to perform brake are disk brake & tread brake. This study targeted development of highly efficient sintered alloy brake shoe in railway vehicle whose high frictional coefficient, wear resistance, compatibility of the existing tread brake shoe & minimization of wheel's thermal damage and performed development of friction material's formulation, analysis of pressure distribution in wheel tread & brake shoe, optimum form design through analysis of heat flow.

  • PDF

Development of wheel width and tread acquisition algorithm using non-contact treadle sensor (무접점 답판 센서를 사용한 차량 바퀴의 윤폭 / 윤거 획득 알고리즘 개발)

  • Seo, Yeon-Gon;Lew, Chang-Guk;Lee, Bae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.627-634
    • /
    • 2016
  • Vehicle classification system in domestic tollgates is usually to use treadle sensor for calculating wheel width and tread of the vehicle. due to the impact that occurs when the wheels of the vehicle contact, treadle sensor requires high durability. recently, KHC(Korea Highway Corporation) began operating high-speed lane for cargo truck. high-speed cargo truck generate more impact the design criteria of previous treadle. therefore, an increase in the maintenance and management costs of the treadle damage is concerned. In this paper, we propose an algorithm for obtaining optimal wheel width and tread using non-contact treadle sensor that been improved durability from physical impacts. for the verification of the proposed algorithm, a field test was performed using 1/2/3/6 class vehicles based on the KHC's classification criteria. through this experiments, maximum error of the width and the tread is each ${\pm}2cm$ and ${\pm}8cm$, also the accuracy was measured as 98%, 97% or more, and proved that the proposed algorithm valid on to apply to the vehicle classification system.

Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel (철도차량 차륜의 기계적 특성 및 잔류응력평가)

  • Seo, Jung Won;Kwon, Suk Jin;Lee, Dong Hyeong;Jun, Hong Kyu;Park, Chan Kyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.