• 제목/요약/키워드: Wheel track

검색결과 355건 처리시간 0.033초

곡선부 주행안전성 향상을 위한 윤축 조향 제어 (Wheelset Steering Control for Improvement a Running Safety on Curved Track)

  • 허현무;안다훈;김남포;심경석;박태원
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

실 주행열차의 윤중변동에 대한 정량적 분석 (A Quantitative analysis about Wheel Load Variations)

  • 김현민;오지택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.728-732
    • /
    • 2004
  • The purpose of this study is to examine wheel load variations on the bridge. It had been reported that wheel load variations involved un-sprung mass, sprung mass and train running speed, but there are no examples that measured in the running speed actuality track. In this experiment, Attach measurement sensor to equal distance on the track and measured wheel loads by using a dynamic shear strain technique.

  • PDF

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

고속철도 레일 표면 결함 관리기준에 관한 연구 (Investigation of the Maintenance Criteria for the Rail Surface Defects in High-Speed Railways)

  • 양신추;장승엽
    • 한국철도학회논문집
    • /
    • 제14권6호
    • /
    • pp.535-544
    • /
    • 2011
  • 레일 표면 결함이 발생할 경우 매우 높은 충격하중이 발생하여 레일 피로 진전 또는 레일 파단에 이를 수 있고 레일이 파단될 경우 열차탈선 등 대형 사고가 발생할 수 있으므로 레일 결함부에 대한 관리기준의 정립이 매우 중요하다. 본 연구에서는 차량-궤도 동적 상호작용 해석 프로그램을 이용하여, 실제 고속철도 자갈궤도에서 결함이 발생한 43개 지점에서 측정된 레일요철을 입력값으로 하여, 요철 깊이에 따른 충격 윤중과 레일 휨응력을 산정하였다. 궤도틀림을 감안하여 윤중 및 레일 휨응력의 한계값을 설정하고, 해석결과로부터 얻은 윤중 및 레일 휨응력 최대값과 결함 깊이 및 폭과의 상관관계를 분석함으로써 레일 표면 결함부에 대한 관리기준을 제시하였다. 분석 결과, 허용할 수 있는 요철 깊이는 충격 윤중에 의하여 발생할 수 있는 레일 두부의 소성 변형을 방지하기 위하여 관리되어야 하며, 엄격한 조건을 평가할 경우 그 값은 0.2mm 정도가 적당함을 알 수 있었다.

휠 차량의 내구 시험장 조성을 위한 매개변수 연구 (A Parametric Study for the Construction of Durability Test Track of a Wheel Type Vehicle)

  • 송세철;김형근;박태건;김동준
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 1998
  • For the design and development of the wheel type excavator, the dynamic effects of travelling on the performance of the equipment should be first analyzed and conside- red in the initial design stage. In order to test the durability of the equipment in a short period, th travelling test should be performed over accelerated durability test tracks. which is more severe than general field roads such as city road, paved road, unpaved road and rough road. In this paper, a parametric study is performed in order to determine important design parameters of durability test track of a wheel type excavator. A rigid body model is developed using DADS and dynamic analysis is performed for the equipment travelling over several test roads with different severity. A comparison of test and analysis results is also presented.

  • PDF

곡선부 주행 중 타오름 탈선의 매개변수 연구 (A Parametric Studies to the Wheel Climb Derailment on the Curved track)

  • 목진용;이승일;이희성;황정택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.72-79
    • /
    • 2006
  • Derailment is likely to have a direct connection with human life and must be eliminated. A traveling safety evaluation method based mainly on derailment coefficient has already established. But this method is very difficult because Derailment is caused by multiple factors. To evaluate the derailment factor of running train that runs on the curved track, we make use of mechanism that wheel loads and lateral forces were affected by track and rolling stock parameter. In this paper, deal with a search on the parameter and derailment factor. According to results of computer simulation value of Q/P, running safety is connected with operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio, etc.

  • PDF

콘크리트 매립형 궤도를 운행하는 트램의 주행안전성 향상 기술 (Technologies for improving the running safety of a tram operating on the concrete embedded track)

  • 서승일;문형석;김선천
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.717-724
    • /
    • 2017
  • 콘크리트 매립형 궤도를 운행하는 트램의 주행 안전성을 향상시키기 위해 핵심 구성품인 대차를 개발하고 제작하여 시험 차체와 조립한 후, 단거리 급곡선 급경사 궤도를 건설하고 시험운행을 실시하였다. 대차의 급곡선 주행 중 차륜 플랜지와 매립형 궤도의 간섭을 검토할 수 있는 산식을 제시하였고, 산식 결과에 따라 궤도를 설계하였다. 간략화된 계산식을 도출하여 곡선에서 탈선계수와 윤중감소율을 추정하였다. 단거리 급경사 급곡선 매립형 궤도에서 대차와 차체가 주행할 때에 차체의 가속도를 계측하였고, 영상 시스템을 통해 차륜과 궤도의 인터페이스 상태를 점검하였다. 계산 추정 결과에 따르면 차륜의 탈선계수와 윤중감소율은 안전기준 이하였는데, 실제 주행 시험 중에도 탈선은 발생하지 않았고, 가속도 계측 결과도 주행 안전기준을 만족하였다. 또한, 차륜과 궤도의 간섭은 발생하지 않았고, 영상 모니터링 결과도 차륜의 올라타기 등 탈선조짐은 발견되지 않았으며, 중앙의 피니언과 랙이 원활히 접촉하면서 양호한 주행안전성을 보여주고 있었다. 외부 소음 계측을 통해서 소음 기준을 만족하고 있음을 확인하였다.